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Preface

The purpose of this research has been to explore new methodologies for constructing confi-

dence intervals based on the information provided by Kalman filters and to compare and contrast
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initial objectives of this study were met and several areas have been identified for follow-on studies.
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Kalman filter turned an extremely complex area of study into an understandable and enjoyable
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Technology for the various insights and contributions they have given me.

Captain Mark Gallagher deserves much recognition for the endless hours of support and
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Abstract

Discrete-event simulation is computer modeling of stochastic, dynamic systems. The Kalman

filter is a Bayesian stochastic estimation algorithm. Because of the correlated nature of simulation

output, it is difficult to apply the methods of classical statistics directly when constructing confi-

dence intervals of discrete-event simulation parameters. Through the determination of a dynamics

equation and application of the Kalman filter to simulation output data, three new confidence

interval construction techniques have been developed. One technique obtains an estimate of the

mean value and its associated variance from an estimated "optimal" Kalman filter. The second

technique utilizes Multiple Model Adaptive Estimation techniques to obtain an estimate of the

simulation output's mean value and its associated variance. The third technique also uses MMAE,

but constructs a nonsymmetric confidence interval using the final MMAE filter probabilities.

The purpose of this research was twofold. The first objective was to explore these new confi-

dence interval construction techniques based on the information provided by Kalman filters. The

second objective was to contrast these Kalman filter approaches to several accepted techniques

for confidence interval construction. Both of these objectives were achieved and excellent results

were obtained. In particular, a Monte Carlo analysis demonstrated that the third technique pro-

duced intervals that achieved nominal coverage rates with, when compared to currently accepted

techniques, smaller average half widths and lower variability.

xi



CONFIDENCE INTERVAL ESTIMATION

FOR OUTPUT OF DISCRETE-EVENT SIMULATIONS

USING THE KALMAN FILTER

I. Introduction

Background

Frequently the Air Force needs to estimate various parameters associated with a system.

These systems can include aerial refueling missions, customer lines at base commissaries, and

staffing at medical center emergency rooms. The systems are often extremely complex and not well

modeled by analytical formulas. However, computer simulation can often be used to analyze these

systems [29:6]. Pritsker defines computer simulation as "the process of designing a mathematical-

logical model of a real system and experimenting with this model on a computer" [38:6].

Pritsker [38:6] states the primary advantage of computer simulation is that it allows us to

make inferences about a system without building it, or disturbing it, or destroying it. Thus, when

compared to actual experimentation with a system, simulation is inexpensive, unobtrusive, and easy

to implement. The Air Force, faced with decreasing budgets, must rely increasingly on simulation

to analyze its systems objectively. Therefore, the Defense Science Board recently recommended

using more simulations to analyze weapon system development and procurement systems 14:40].

In addition, the Department of Defense has included "Simulation and Modeling" in the twenty

critical technologies for ensuring the long-term qualitative superiority of United State's weapon

systems [7].

The primary purpose of the computer simulation is to allow the analyst to estimate various

output parameters [45:268]. For example, the parameters may include the average number of

minutes a customer will spend in line or the average number of aircraft a tanker can refuel. Because

of the psuedo-random nature of the stochastic simulations, the parameters can not be exactly

determined and therefore, must be estimated.



Law and Kelton state, "One of the most important but difficult problems encountered in a

real-world simulation study is that of constructing a confidence interval (c.i.) for the steady state

mean .. ." [28:12211. A confidence interval is a numeric interval that has a stated (1 -a) confidence

level. The confidence level is a probabilistic statement, such that, if one constructs a large number

of confidence intervals, he can expect (1 - a) percent of them to contain the true parameter. Most

methods of constructing confidence intervals require an estimate of a value and its corresponding

variance, and many analysts do not put enough effort into estimating these values [29:522]. Several

techniques for estimating parameters and associated confidence intervals of computer simulation

output data exist [29, 28, 45]. Conclusive evidence on which, if any, of the existing methods is

the most accurate is hard to find. In addition, Kalman filters may provide information useful in

constructing accurate confidence intervals.

According to Maybeck, the Kalman filter is "... an optimal recursive data processing algo-

rithm" [30:4]. It can also be defined as a recursive mathematical technique that allows one to make

inferences about the state of a stochastic process based on noise-corrupted measurements [30:3-7].

A Kalman filter state is the set of variables that characterize the relevant parameters of a system.

Meinhold and Singpurwalla [36:123] observe the Kalman filter is mainly used in engineering appli-

cations and give examples of its use in aerospace tracking and underwater sonar. The techniques

used in Kalman filters provide valuable information that may be exploited in the area of operations

research, specifically, in the area of simulation output analysis.

Purpose

The purpose of this research was twofold. The first objective was to explore confidence

interval construction methods based on the information provided by Kalman filters. The second

objective was to compare and contrast these potential methods with several published techniques

for confidence interval construction.

Scope of the Study

In operations research, simulations can be characterized in several ways. These characteriza-

tions include the following:

2



1. deterministic versus stochastic

2. static versus dynamic

3. continuous and/or discrete

Deterministic simulations have known input variables, while stochastic simulations have input vari-

ables that are functions of random inputs. Stochastic simulations can be broken into static and

dynamic simulations. A simulation is described by a collection of variables known as the system

state. In static simulations this state does not change. Examples of static stochastic simulations

are distribution sampling and classic Monte Carlo techniques [46]. In dynamic simulations the

state variables change over time. For example, one state variable of a commissary line simulation

describes if the cashier is busy or idle, and this variable will obviously change over time. Before

discussing discrete-event and continuous event simulations, it is necessary to define events. In sim-

ulation, an event occurs when a state changes. In a discrete-event simulation, events only occur at

specific points in time [38:52], such as customer arrival or service completion. In continuous-event

simulations, events occur continuously throughout simulated time [38:52]. This research dealt with

simulation models which are stochastic, dynamic, and characterized by discrete events (generally

called "discrete-event simulation").

Discrete-event simulations also can be characterized with regard to analysis of their output.

The two different types are terminating and nonterminating (steady-state) simulations. In termi-

nating simulations, the length of the simulation run is quantitatively defined. For example, one

can estimate the number of customers in a store at the end of an eight hour day. In a nonter-

minating simulation one wants to estimate a parameter, which will reach a steady-state value, as

the simulation length approaches infinity [26:89-90]. These nonterminating simulation parameters

can be steady-state cyclic (following a periodic probability distribution) or constant steady-state

(where the parameter attains a stationary probability distribution). This research focused on tech-

niques for estimating parameters of nonterminating simulations that reach stationary steady-state

probability distributions.

The analysis of nonterminating simulations involves the determination of the duration period

of a transient phase of the simulation. The transient phase is the part of a simulation necessary

for a system to move from the initial starting condition to effective steady-state conditions [38:431.

3



The output of the transient phase is not representative of the steady-state output and can bias the

estimation of steady-state parameters. This research eliminated the problem of transient conditions

by truncating a large part of the initial data.

According to Pritsker there are two distinct types of parameters that can be estimated from

simulation output; he calls these cases "statistics based upon observations" and "statistics based on

time-persistent variables" [38:36]. The first type, "statistics based upon observations", deal with

those parameters associated with particular entities in the simulation. For example, one might be

interested in how long a plane has to wait for aerial refueling. Values for this type of variable can

only be recorded at certain points in the simalation (e.g., when a plane quits waiting and begins

to refuel) and the analyst is generally interested in the average value for all the observations.

The second type, "statistics on time-persistent variables", deal with variables that have a value

throughout the simulation. For example, one might be interested in the number of planes waiting

for refueling. The value of these parameters can change at any time, and one is interested in

determining the average value over time. This research considered both types of parameters.

Objectives

To reach the goals of this effort several objectives had to be met. First, methods had to be

developed to compute confidence intervals or similar intervals based on the use of Kalman filters.

Computer routines were developed to process simulation output through Kalman filters. This

software provided the necessary information for constructing confidence intervals. Application of

the Kalman filter provides a vast amount of information about the systems and the parameters of

interest. Specifically, a state-space representation, state estimates, the state estimate covariances,

residuals, and computed residual covariances are available (3.9). By relating this information to the

variance of the parameter estimates from the simulation output, new techniques for constructing

confidence intervals were developed.

The next objective was to test these techniques. Computer simulation models of time se-

ries and queueing models with known analytical means were programmed. Computer routines

were developed to compute confidence intervals based on the Kalman filter techniques and four

widely applied techniques (nonoverlapping batch means, overlapping batch means, standardized

4



time series, and autoregressive).

The final objective was to compare the various methods of confidence interval estimation. A

Monte Carlo analysis was conducted in which each method was used to calculate a large number

of independent ninety-percent confidence intervals for the chosen parameter. The methods were

compared and contrasted using the resulting actual coverage rates, interval half widths, and interval

half-width variance.

Overview of Chapters

The following chapters will cover the thesis effort in detail. Chapter II provides a revie;w Uf

the following three areas: 1) the statistics involved in constructing confidence intervals, 2) currently

applied construction techniques, and 3) performance criteria for confidence intervals. Chapter III

provides an overview of Kalman filters and the associated information they provide. This chapter is

a modified version of a research proposal submitted to the Air Force Office of Scientific Research [3].

Chapter IV develops the methodology of the proposed confidence interval construction ap-

proaches. Chapter V provides tl'c2 Monte Carlo results and discusses their implications. Finally,

Chapter VI provides a summary of the final conclusions drawn from this research and offers rec-

ommendations for further studies.

5



II. Confidence Intervals

The literature required to support this research includes publications in both the areas of

confidence intervals and Kalman filters. This chapter will concentrate on confidence intervals.

Specifically, the review will explore the following areas in relation to confidence intervals: 1) in-

dependent random variable statistics, 2) steady-state parameters in discrete-event simulations, 3)

performance measures for confidence intervals, and 4) current construction procedures. The fol-

lowing chapter will concentrate on the Kalman filter.

Independent Random Variable Statistics

In classical statistics confidence intervals are easily calculated from estimates of the parameter

and its associated variance. Following the development of Law [26:985-986], Y1, Y2,..., Y, are n

independent identically-distributed random variables with a population mean of ;L and a population

variance of a2 . The sample mean
( nY

n

is an unbiased point estimator of the population mean au (i.e., E[Y"(n) - tz] = 0). The sample

variance
2 n(Y - Y (n) ) 2 ()

s2(n) n - I1
1=1

is an unbiased estimator for a 2 (i.e., E[s2(n)] a2 ). The variance a2 is a measure of how spread the

individual Y's are from the point estimate ?(n). The point estimate YT(n) will have an associated

variance a(,), which is a measure of the spread in mean estimates about the true mean. Since
2 W.

the Y,'s are independent, the variance of the sample mean is calculated as a2 0 ) /n. Using

Equation (1) above, an unbiased estimator for the variance of Y(n) is

&? s2 (n)/n

If the Y's are normal random variables, then

6- p
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has a t distribution with (n - 1) degrees of freedom and

Y :) -t-,1.2[2n/ (2)

where tn,,/2 is the upper I - a/2 critical value for a t distribution with n- 1 degrees of freedom,

gives a 100(1 - a)% confidence interval for u.

Law gives an excellent interpretation of this confidence interval, "If one constructs a very

large (an infinite) number of 100(1 - a)% confidence intervals each based on n observations, the

proportion of these confidence intervals that contain 'cover) ji will be 1 - a and is called the

coverage for the confidence interval" [26:9861. He then goes on to say that in actual practice the

variables (Y's) will not be normal and the actual coverage may be less than the stated (nominal)

1 - a coverage. However, if n is large enough, the central limit theorem will ensure that the actual

coverage will approach the nominal cove--age [26:986].

Steady-State Parameters for Discrete-Event Simulation Data

Constructing confidence intervals for steady-state values of discrete-event simulation param-

eters is one of the primary objectives of this research. According to Heidelberger and Welch:

In generating confidence intervals for steady-state characteristics there are two funda-
mental problems: (1) There is a transient phase during which the characteristics of the
output sequence do not approximate the steady-state characteristics. (2) The output

sequence is, in general, correlated and hence standard statistical techniques based on
uncorrelated observations do not directly apply. [16:233]

There are several proposed techniques for estimating parameters and associated confidence intervals

from a sequence of simulation output {Yi, Y2, ... , y, }. All of these techniques require the deletion

of the initial transient data. There are several truncation methods for deleting this transient data

[29]. Based on different assumptions and techniques, each confidence interval method deals with

the correlated nature of the output data differently. Law [26:997] explains that the methods can

be placed into two main categories: fixed-sample size procedures and sequential procedures. Fixed-

sample size procedures assume the analyst must compute a confidence interval with a given amount

of data (either in one long run or several shorter runs). Sequential procedures allow the analyst to
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change the length of a simulation run until obtaining a satisfactory confidence interval. This study

is limited to fixed-sample size procedures.

The literature suggests five prominent methods based on fixed-sample size and a single long

simulation run [26, 27, 20, 25, 28, 41]. The five procedures are 1) batch means, 2) overlapping

batch means, 3) autoregressive time series, 4) standardized time series, and 5) spectral analysis.

Construction Techniques

This section provides a brief overview of five methods for confidence interval construction.

Each of these techniques is designed for one long simulation run and assumes the initial transient

is deleted. The various methods result from different approaches to account for the correlation in

the output sequence.

Batch Means. To alleviate the problem of autocorrelation, the method of batch means makes

one single run of m observations and divides the run into n "batches" each of k sequential observa-

tions. This method relies on an assumption that the process is covariance stationary [29:554-555].

Covariance stationarity means that all of the oioservations have the same expected value and all

of the covariances between any two random variables separated by a set interval of time are equal

[38:100]. Law and Carson [27] have demonstrated that, in general, for a large enough batch size

this assumption holds true.

Following Welch's [45:307] discussion, most simulation models have positive autocorrelation

that decreases as the lag between the random variables increases. Therefore, there exists a lag

amount L such that correlations greater than L are essentially zero. Welch states, "If we partition

this steady-state sequence up into contiguous subsequences of length N > L then estimates derived

from these subsequences can be considered to be approximately independent" [45:307].

The sample (batch) mean for the k observations in the nth batch is 9,,(k). The grand mean

can be found by averaging all of the batch means. Since the batch means are uncorrelated, the

sample variance can be found using Equation (1), and an appropriate confidence interval can then

be computed with Equation (2).
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The primary advantages of this technique are its efficient use of the available data and its

simplicity. However, 'he selection of batch size (and hence number of batches) is very difficult.

Law and Kelton [28:1224] state the batch size must be large enough to satisfy the normality and

independence assumptions. If the batch size is too small, the means of sequential batches will be

correlated. Law and Kelton go on to say that correlated batch-means result in underestimating

the variance of the mean estimate. This potential bias in the estimation of the variance causes the

most errors in application of this method.

Batches which are too large cause a loss of information. The loss of information manifests

itself in large confidence intervals with high variance [29:555]. Welch [45:3091 recommends the

subsequence length be k > 5L, but the choice of L is also difficult. Welch recommends estimation

using an autocorrelation function to determine L. Fishman developed a procedure to test for inde-

pendence between batches. Using the Von Neuman statistic, the batch size is iteratively increased

until the test of independence of batches is passed. Fishman [9:514-515] recommended at least eight

batches because the statistical test used to detect correlation has little power with fewer than eight

batches. Schmeiser [40:560] found that fewer than ten batches resulted in very unstable intervals,

and additional batches beyond thirty yield little improvement in the performance of the confidence

intervals.

Overlapping Batch Means. Meketon and Schmeiser [37] introduced the method of overlapping

batch means. Their method is very similar to the method of batch means, but they contend

that batch size is more important than independence between batches. Therefore, they allow the

batches to overlap and estimate variance using all m - k + 1 batch means of size k. Their paper

shows that overlapping batch-means produce confidence intervals with 2/3 the variance of those

constructed with nonoverlapping batch means. Kang and Goldsman [20:16] state that the method

of overlapping batch means produces confidence intervals with smaller average half widths than

the regular batch means method. After estimating the mean estimates variance, the computation

of confidence intervals is similar to that of nonoverlapping batch means.

Autoregressive Time Series. The method of autoregressive time-series attempts to use the

autocorrelation structure of the simulation process to determine a confidence interval [26:999

9



Law and Kelton state, "the autoregressive method, developed by Fishman, assumes the pro-

cess is covariance stationary and can be represented by a pth order autoregressive model" [28:1224,.

An autoregressive (AR) model is a model in which the state at time n is a function of the state

at one or more previous times plus a random error term [39:465'. For example, in a first-order

AR process, the state at time n is a constant multiple of the state at time n - 1 plus a random

error term. Fishman's method determines a pth order, AR(p), model that "fits" the data, and

the AR model provides the variance estimate of the parameter [10:247-252]. A confidence interval

is constructed using the mean value of the simulation output and the calculated variance. Law

[26:10001 gives a detailed description of this method.

Schriber and Andrews [41:348] generalized the methodology to allow for a moving-average

component along with the autoregressive factors. The moving-average (MA) component of an

autoregressive-moving average (ARMA) process allows the state of the process to depend on the

past error terms (en). For example, a second-order ARMA process is a model where the state

at time n is Xn = Ox,-i + 52 xn- 2 + 00 - -n - Oifn-i - 02(n-2. The Oi's are the autoregressive

coefficients, and the Oi's are the moving-average coefficients.

Law and Kelton [28:1225] believe the major problem with this method is the validity of an

AR or ARMA model for an arbitrary stochastic process. They state that, if the model is incorrect

(e.g., the process is not covariance stationary or the wrong model is fit), the associated confidence

intervals may have smaller coverages than desired. Pritsker [38:740] states that this technique

has not produced reliable estimates of the mean's variance, probably because of non-stationary

behavior of the time series or a non-normality of the individual observations. Another drawback of

this method is that it requires an advanced understanding of time series.

Standardized Time Series. Schruben f42], in 1983, introduced a novel application of standard-

ized time series models to simulation output data. Schruben's methodology assumes the process is

strictly stationary and is a phi-mixing process. Law explains that "strictly stationary means that

the joint distribution of Yi,+7, Y,+,. . ., Y,,+. is independent of j for all time indices 1i, i2,..., in"

[26:1003]. Phi-mixing means that Y, and Y,+j become independent as j becomes large [26:10031.

This method separates the run into batches, exactly as in the method of batch means, and calcu-

lates individual batch means and a grand mean (9) in the same way. Following the development of
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Law:

... make one simulation run of length m and divide Y1 , Y2,. . ., Y, into n batches of size
k(m = nk). Let Y,(k) be the sample mean of the k observations in the jth batch.
The grand sample mean ?(m) is the point estimator for v. Furthermore, if m is
large, then Y(m), will be approximately normally distributed with mean v and variance
r7/m, where r2 = limm_. nmVar(Y(m)]. Let A = [12/(k 3 - k)] Z= 1{Z,= 1I(k) -

Y+(_)k1} 2 . For a fixed number of Latches n, A will be asymptotically (as k - oo)
distributed as r 2 times a chi-square random variable with n degrees of freedom and
asymptotically independent of Y(m). ]26:1003]

Using the above definitions, a t distribution can be found and a confidence interval constructed

using [26:1003]:

Y(m) ± t,,, 1 cx/2VA/mn

The major advantage to this method is its computational ease [26:1004]. The major difficulty with

this method is selecting the batch size. As in the method of batch means, there is a bias in the

estimation of the variance. However, the method of standardized time series reduced the variance

of estimates for simulation data when compared to batch means [5:208]. Glynn and Iglehart '12i

have had good success in working with this method.

Spectral Analysis. The method of spectral analysis estimates the autocorrelation structure of

simulation data and obtains an estimate of the variance of the sample mean based on the structure

[26:1000]. The literature suggests two prominent variants of the spectral method developed by

Heidelberger and Welch [16] and Fishman Al0]. Both methods are based in the frequency domain

rather than the time domain [16:233]. Law and Kelton [29:556-557] summarize the general logic

behind both of these methods. They state that the method assumes the process is covariance

stationary with mean p. Under this assumption the variance can be mathematically estimated in

a fashion similar to that of the autoregressive method. The method of spectral analysis estimates

the variance using Var[Y(m)] = 2irg(0) as m - oo, where g(r) is the spectrum of the process at

frequency r, and is defined by a Fourier transform. After estimating the variance, a confidence

interval is constructed using Equation (2) where the sample mean estimates Y(n).
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The method of spectral analysis has the advantage of having only the assumption of covariance

stationarity [16:233]. Law and Kelton r2 6:1001] found that the spectral method is very complicated

and sometimes produces confidence intervals with low actual coverage.

In summary, these five confidence interval techniques have varying approaches for dealing with

the correlated output sequence of simulat:on output. These approaches range from approximating

independence to estimating the correlation in either the time or frequency domain. Yet, none of

these techniques constructs confidence intervals in a consistent and satisfactorily manner. In order

to compare confidence intervals constructed with these and other techniques, it is necessary to

review the various performance measures used to evaluate confidence intervals.

Performance Measures

The literature suggests many ways to evaluate and -'--pare confidence intervals. The most

widely accepted criteria are coverage frequency -F the interval, expected width of the interval, and

variance of the interval width [41, '3, 40, 21, 5, 20, 47, 26]. These measures are conflicting in

nature. Therefore, if a researcher a~temp'. -, lilp-rve one measure, the action he takes might

have a detrimental effect on another measure. It is the researcher's task to find a good compromise

between the measures. To evaluate the actual measures of performance for a given method, the

researcher applies a Monte Carlo strategy. A Monte Carlo strategy constructs a large number

of independent confidence intervals for a parameter with an analytically known value, and then

calculates the various measures.

Coverage Frequency. Schruben [42:11011 describes the coverage frequency as the percentage

of confidence intervals that actually include the true value of the parameter. He goes on to say that

the analyst would prefer the observed frequency (actual coverage) to be equal to the stated coverage

of (1 - a) percent. Kang and Schmeiser [21:5461 state that coverage is the primary criterion for

evaluating confidence intervals. For a fixed number of observations n, it is desirable to have the

actual coverage be as close to 1 - a as possible. To calculate the coverage frequency, the analyst

deterrr*.ies the percentage of times the individual confidence intervals actually contain the true

value of the parameter. This measure of effectiveness also can be expressed as a probability of

coverage [5:203].

12



Expected Width. Chen and Sargent point out that a wide confidence interval will have a

better probability of covering the true value of a parameter. For example, they point out that the

interval 0 < o 2 < o will always contain the true value of a 2 , yet this interval tells the analyst

nothing about the value that he did not already know (i.e., it is a positive value). Therefore, Chen

and Sargent state, "the expected width of the interval is the most used measure" [5:2031. The

expected width is the length of the corfidence interval. Law [26:986] states that the interval half

width (length/2) is another method of reporting this measure. He agrees with Chen and Sargent

that in choosing between two confidence intervals with the same probability of coverage, the analyst

prefers the one with the smallest half width because it offers more p-ecision.

Variance of the Interval Width. A measure proportional to the variance of the interval width

is the standard deviation of the individual interval half widths [42:1101]. The standard deviation

gives a measure of the stability of the confidence interval [5:205]. Kang and Schmeiser [21:546] state

that if a confidence interval technique results in intervals with a large width variance, its accuracy

will be subject to frequent false indications. Methods subject to false indications produce some

intervals that have low coverage and some that have high coverage. These false indications make it

hard for the researcher to determine the true accuracy of a given interval. Therefore, the researcher

prefers confidence-interval techniques that provide interval widths with small variances.

Summary

The output sequence from discrete-event simulations is usually correlated and standard statis-

tical techniques can not be used to construct confidence intervals. Numerous methodologies have

been proposed for constructing confidence intervals from a sequence of simulation output. Five

of the most widely-used techniques are nonoverlapping batch means, overlapping batch means,

autoregressive, standardized time series, and spectral analysis.

There are three main performance measures used to evaluate various confidence interval con-

struction techniques. These performance measures are actual coverage rate, average half width, and

standard deviation of the half widths. In general, one wants a technique that produces confidence

intervals with 1) an actual coverage rate equal to, or near, the nominal coverage rate, 2) a small

average half width, and 3) a low standard deviation of the half widths. It is hard to find conclusive
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evidence on which, if any, of the available techniques produce the best confidence intervals for

simulation output.

The next chapter discusses the foundations of the Kalman filter. Chapter IV then shows how

Kalman filters may be used to construct meaningful confidence intervals for output of discrete-event

simulations.
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III. Kalman Filters

Kalman [18] and Kalman and Bucy [19] developed the Kalman filter based partially on the

work of the German mathematician Gauss. Kalman's contribution was to combine the work Gauss

extended with the state-space representation in linear system theory. Akaike [2] defines a state

as "a condensed representation of information from the present and past, such that the future

behavior of the system can completely be described by the knowledge of the present state and the

future input." Since the Markov property means that some set of sufficient statistics at the current

time provides as much information about the system as all the historical statistics, this definition of

state-space representation is limited to Markov processes. The original derivation was based on the

fact that the state estimate at time t, based on all measurements through that time, i(t+), is the

orthogonal projection of the true state x(ti) onto the subspace spanned by the measurement history

Z(t) composed of measurements z(tl), z(t 2),... ,z(ti) at each sample time t 1 , t2 ,..., ti [30:235].

The Kalman filter is an optimal, recursive, next-step prediction algorithm. After initialization,

the discrete Kalman filter continues with a two-step procedure. The first step propagates the best

estimate of the state estimate through time. The second step uses the information contained in a

noise-corrupted measurement to update the prediction. The algorithm repeats again by propagating

this estimate to the next time interval. These steps of propagation and update are repeated for each

of the available observations. Before showing the Kalman filter formulas, the underlying theory of

stochastic processes will be discussed.

This effort deals only with univdriate simulation output sequences. Therefore, the dynamics

noise and its associated variance, the measurement noise and its a ciated variance, and the

measurements are all scalars. The notation throughout this and subsequent chapters reflects this

univariate case, but the Kalman filter concepts can easily be extended to the multivariate case.

This entire L.hapter follows Maybeck's development of the Kalman filter [30, 31, 32].

Stochastic Processes

Simulation output is a discrete realization of a stochastic process. In this section, the stochas-

tic process will be described or approximated by a linear stochastic difference equation. The

stochastic process is defined in terms of the states that are estimated by the Kalman filter, which
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may or may not be the simulation states or the simulation observations. The estimation of the

stochastic difference equation parameters is dependent upon the filter-design states selected for the

application.

Assume the underlying stochastic process can be described or approximated with a linear

stochastic difference equation,

x(ti+l) = 1I1(ti+i, t1)x(t) + G(t,)wd(t) (3)

where x is the state vector

4 is the state transition matrix

G is the dynamics noise dispersion matrix

Wd is the dynamics noise

The discrete-time dynamics driving noise Wd(ti) is normally distributed with zero-mean and the

following characteristics:

E[wd(ti)] = 0

E[wd(ti)wd(tj)] = Qd(ti) for t, = tj

E[wd(tt)wd(tj)] = 0 for t, 7 tj

The dynamics noise sequence {wd} is uncorrelated in time, or white.

Assuming equally-spaced samples and a time-invariant system model, the transition matrix

is constant (i.e., -t(t,+1 , t,) = 4). Fishman suggests that in simulation output applications, equally

spaced can be in terms of simulated time or an index [8:282]. For example, customers through a

queuing system could be numbered sequentially as an index. The transition matrix then repre-

sents the relationship between subsequent entities. In addition, since the dynamics of steady-state

simulation output is being modeled, the covariance matrix Qd(t,) for the discrete-time white noise

sequence wd(t,) and the distribution matrix G(t,) are assumed to be constant matrices, Qd and G

respectively.

In addition, in order to apply the Kalman filter, measurements of the system must be available.

In these applications, the simulation output can be used as discrete-time measurements of the

filter-design system states [11]. The measurement model indicates the relationship between the
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filter-design states and the measurements:

z(t,) = n(t,)x(t,) + v(t,) (4)

where z = y - 4j is the Kalman filter measurement

y is the simulation output

H is the measurement matrix

x is the vector of filter-design system states

v is the measurement noise

Assume that measurement noise sequence {v(t 1 )} is white, normally-distributed zero-mean

stochastic sequence, such that,

E[v(t)] = 0

E [v(t,)v(tj)] = R(t,) for t, = tj

E[v(t,)v(t,)] = 0 for t, 5 t,

The dynamics noise sequence {wd(t,)} and the measurement noise sequence {v(t,)} are assumed to

be uncorrelated.

If the measurement matrix H(t,) is not a function of the states x(t), then the measurement

equation is linear. In addition, for steady-state simulation output sequences, the measurement

matrix H(t1 ) and the variance of the measurement noise process R(ti) are assumed not to change

with time. Therefore, these time-dependent matrices will be replaced with constant matrices,

H(t,) = 11 and R(t,) = R.

Linear Gaussian Time-Invariant Kalman FiVer Algorithm

The discrete-time Kalman filter algorithm is shown below for a time-invariant, linear system

with no control inputs, and normally-distributed (Gaussian) zero-mean discrete dynamics noise and

measurement noise [30:275]. Discrete-time implies that the propagation and measurement updates

occur only at set intervals, and Linear implies that the values of the filter-design system states x(t,)

do not affect the values of the transition matrix *, dynamics noise dispersion matrix G, or the
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measurement matrix H. Time-invariant means that the filter-design matrices 4, G, and H do not

change throughout the stochastic process. Due to process stationarity, the covariance matrices of

the noises Qd and R do not change throughout the stochastic process.

Before showing the two stages of the Kalman filter algorithm, the notation, which again follows

Maybeck [30, 31, 32], must be explained. Estimates are indicated by "hat" over the variable, such

as, Kalman filter state estimates fc. However, at each point in time, two estimates of the state and

associated covariance matrices are encountered. The first is the estimate based on the propagated

output of the dynamics equation, before the measurement information is incorporated at that

sample time. These estimates from the propagation stage are labeled with a superscript minus sign

k(ts-). In contrast, the state estimate resulting from the measurement update step are labeled with

a superscript plus sign k(t-). The associated covariance matrices have similar notation with P(t-)

and P(t + ) respectively.

Propagation Stage. Two equations comprise the propagation stage. The first formula deter-

mines the propagation through time of the estimated state vector. The second equation propagates

the -ovariance matrix of the state variables through time. The propagation equation takes the best

state estimate at the previous time k(t,-_I) (or the initial estimate k(to)), and moves it through

time by multipling by the transition matrix 4P. Therefore, the propagation equation is

-(-) (5)

where k is the estimated state vector

4, is the state transition matrix

This estimate results from the conditional expectation of Equation (3), conditioned on measure-

ments through time t,-,, since the dynamics driving noise wd(t,) has a mean of zero.

The associated covariance matrix P(t,-) is calculated with the following formula:

P(t[) ='P(tA-),T + GQdGT (6)
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where P is the covariance matrix of R

Qd is the variance of the discrete dynamics driving noise

G is the dynamics noise dispersion matrix

These two equations, one for the state estimate and the other for the associated covariance,

complete the propagation stage.

Measurement Update Stage. After the propagation stage, the second step is the measurement

update. The measurement update is actually a static estimation problem of combining two terms

(a state estimate and a correction term K(ti)[z, - Hk(ti)]. The state estimate resulted from

Equation (5) in the propagation stage. The correction to that state estimate is based upon the

actual measurement and the measurement model, Equation (4). Both estimates are normally

distributed with known covariance matrices. The Kalman filter gain provides the weighting between

the two sets of information about the state

K(t,) - P(ty)HT[HP(tf)HT + R] - i (7)

where H is the measurement or observation matrix

R is the measurement covariance noise matrix

K is the Kalman filter gain

The measurement update equations, shown below, determine the new state estimates and

covariance matrix after the measurement at time ti is incorporated. The updated state estimate is:

ict+ ) = R()+ K(t,)[z, - (fi)

where z, is the actual measurement realization at time t,

The updated state estimate k(t + ) is the previous state estimate R(t-) updated with the Kalman

filter gain multiplied by the residuals provided by the measurement. The residual is obtained from

the measurement by taking the actual measurement z, and subtracting the best prediction of the

measurement before the measurement was received. Hfi(t.) is the prediction of the measurement

based on the assumed measurement model, Equation (4), and the fact that the measurement noise
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v(t,) has a mean of zero. Thus, the differences between the predicted measurements and the actual

measurements are the residuals

r, = z,- HR(t) (9)

These residuals are critical in simulation applications of the Kalman filter.

Along with an updated state estimate, an updated covariance matrix is also calculated. Since

the Kalman filter gain K(ti) is the relative weight based on comparing the variances of the estimate

from the propagation stage and the measurement model, this same gain is used to determine the

reduction in variance resulting from incorporating the measurement information.

P(t,+ ) = P(tt-) K(t,)HP(t%- (10)

Each propagation is followed by a measurement update, and then the two-stage cycle begins again.

Another important observation is that the state estimate covariances P(t-) and P(t + ) do not

depend on the actual measurements. If the system model {, G, H} are known, and the dynamics

driving noise variance Qd and the measurement noise variance R are known, then the Kalman filter

gains K(f,) and the covariances P(t-) and P(t + ) are completely determined. Therefore, these

values can be precomputed and stored prior to the actual running of the Kalman filter.

In addition, the Kalman filter gain K(t,) and the covariance matrices P(t-) and P(t + ) are

functions of the initial estimate P(to) and the variance of the dynamics driving noise Qd and

the measurement noise variance R. Since Qd and R are constant (as are 4, G, and H) in these

applications, K(t,), P(t-), and P(t + ) attain steady-state values as the contribution of P(t 0 ) decays.

Using the steady-state matrices, the two-step Kalman filter algorithm simplifies to only two

equations. The first equation is the same propagation relationship, Equation (5), the second equa-

tion is the measurement update from Equation (8) with a constant Kalman filter gain

i k7) = + K[z, - Hi(y)]

The covariances matrices are not calculated since their steady-state values are used for all time.
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After applying the Kalman filter to the simulation output data, not only are the estimates of

the filter-design state vector and the residual vector at each time available, but so are the covariance

matrices associated with these vectors. The covariance matrix P(t + ) represents the individual

variances for each of the filter-design states and their associated covariances, conditioned on the

measurements. This additional information may be used to improve simulation output analysis

techniques.

System Identification

Before applying a Kalman filter to simulation output, the system dynamics and measurement

equations must be determined. For engineering applications, these equations are developed by

aggregating the effect of subsystem components and empirical testing. Since discrete-event simu-

lations are used in applications where no analytically tractable solution exists, the dynamics and

measurement equations must be deduced from the simulation output sequence.

Assume that the discrete stochastic process of simulation output, which has attained a sta-

tionary steady-state distribution, can be represented by a linear time-invariant discrete system

with normally-distributed noise inputs. The dynamics equation, Equation (3), is determined by

the transition matrix 4i, noise dispersion matrix G, and the variance Qd of the discrete, white,

normally-distributed, zero-mean dynamics driving noise wd(t,). The transition matrix 4t relates

the state vector x(t) at one time to the state vector at the next time. Similarly, the measurement

or observation equation, Equation (4), is determined by specifying the measurement matrix H and

the variance R of the discrete, white, normally-distributed, zero-mean measurement noise v(t,).

Therefore, to specify the system equations completely, 4, Qd, H, G, and R must be known or

estimated. However, if they are estimated, the Kalman filter application is no longer linear and

optimality cannot be guaranteed.

Gallagher [11] has done extensive research on identifying appropriate systems for simulation

outputs. The rest of this chapter utilizes the results of his work.

In this simulation output analysis application, the first step to apply a Kalman filter is to

determine apprupriate systems equations. Both Kelton and Law [22] and Schruben [431 model the
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steady-state output as a constant mean plus noise

y, -- j t, 77, for observations n 1, 2, N (11)

where t, is noise with E[7n] -- 0. The subscript has been changed from i to n to represent the N

simulation observations.

In a similar approach, the correlated noise could be modeled with a linear, dynamic, stochastic

system where the noises and lagged noises would be the filter-design states. Therefore, the steady-

state simulation output sequence {y,} could be approximated by a steady-state mean A. plus

a correlated noise 77,,. Since the steady-state process is being modeled, a time-invariant process

appears appropriate.

Since the noises 77, are ti.me correlated, an appropriate model must be determined and esti-

mated. In time series an- , an AR(2) process

77n = t1?7-1 + 0277n-2 + Wd(t,)

can model a mixture of damped exponentials [4:59]. Gallagher has suggested that an AR(2) model

might be a robust model for simulation output [11].

In the proposed model, the simulation output is divided into a steady-state mean plus co;-

related noise. The linear shaping filter for the correlated noise will be modeled as an AR(2) with

a two-state dynamics equation. The noise in simulations may have higher order effects than those

modeled by an AR(2) process. By increasing the dynamics noise variance Qd, a reduced order

model may be sufficient. In addition, perhaps the "lack of fit" of the simple model can be esti-

mated and incorporated as measurement noise. Thus, an increased measurement noise variance R,

will indicate that the simulation output is of a higher order than two.

These autoregressive models can be written as discrete, linear, time-invariant, stochastic,

dynamic systems with the appropriate choices of defining matrices. Let the filter-design system

states x(t,) be the autoregressive noises. The dynamics equation for an AR(2) noise process is
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given by substituting

X(t€[77n 1[ 02 ,jandG= (12)
77n- 1 0 0

in Equation (3).

The measurement model for this process is given by Equation (4) whereH= [ 1 0 ]. The

measurements z, would equal the simulation output yt corrected for their mean. However, the

traditional autoregressive model does not include measurement noise v(t,), sc either v(t,) = 0,

or equivalently, since the measurement noise already has a mean of zero, its variance is zero,

R = 0. While not a traditional autoregressive process, nonzero measurement noise v(t,) may be

incorporated into model [15:51-53]. In this application, since the simulation output y, is known

exactly, the v(t,,) may represent a "lack of fit" from assuming the noise correlation is an AR(2)

process. However, inclusion of measurement noise requires that the variance R of the measurement

noise v(t,) must also be estimated.

Since the assumed model for the simulation output is given by Equation (11), the actual

measurements of the filter-design states (xl(t,) = 77,), are determined by

Zn = yn - (13)

The notation indicates that x, is an element of the vector x.

For this formulation, the 4 , G, Qd, H and R are time-invariant. Therefore, the Kalman

filter gain K and state variance matrices P- and P+ will attain steady-state values. These steady-

state values can be determined by setting the the variance matrices at one time period equal to the

variance matrix at the next time period. However, in this application, the steady-state solutions

were estimated from the simulation output.

In order to implement this formulation of the Kalman filter, the system parameters must

be estimated. The AR(2) formulation has five unknown parameters to estimate, which are the

steady-state mean p., the variance Qd of the dynamics driving noise wd(t,), the variance R of the

measurement noise v(t,), and the autoregressive coefficients 01 and 02.
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Param,,ter Estimation

As mentioned in the previous section five parameters must be estimated in order to implement

the proposed Kalman filter. When estimating these parameters we are looking for the set of

parameters that provides the "best" Kalman filter.

Least Squares Estimation. One scheme for estimating these parameters is based on the fact

that the "best" Kalman filter should provide a minimum value for the sum of the squared residuals.

The residuals are calculated with Equation (9). The least squares parameter estimate minimizes

the sum of the squared residuals for all the observations. This method is commonly called least

squares estimation, and its implementation will be discussed in more detail in Chapter IV.

Multiple Model Adaptive Estimation (MMAE). Another method for parameter estimation is

Multiple Model Adaptive Estimation [31:131]. Multiple Model Adaptive Estimation (MMAE) as

described by Maybeck [31, 33] can be applied to this estimation probiem with the structure of the

dynamics and measurement models imposed by a priori considerations. The MMAE approach is

to approximate the unknown continuous parameter space with discrete points and run a Kalman

filter at each combination of the discretized parameters. The MMAE estimation is accomplished

by monitoring the residuals for each of the Kalman filters in the bank.

For a single unknown parameter, let "a" denote the parameter to be estimated. The con-

tinuous range of values for a will be discretized into K representative values. In most engineering

applications, the grid discretization should be determined by the effect of varying the particular pa-

rameter [24, 34, 44, 23]. However, in this application, the analyst is not interested in how a change

in the parameter effects the system. Instead, he is interested in obtaining a reliable estimate of the

mean value of the parameter and its associated variance. The grid discretization is still, however,

an important issue and it will be discussed in Chapter IV.

After the discretization of the parameter space is complete, let the probability that the pa-

rameter a assumes the value ak conditioned on the measurement history prior to and including

time t, be pk(tn) = Prob (a = aklZ(t,) = Z,), where Z, is the measurement history up to time
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t,. Assuming a is limited to the K discrete values ak, the probability is calculated as {34:

PI~tn) f_(t,)Ja,Z(t,_,)(zn[a, , Z, -i) -p,( tn-,) (4
pj~n) .k= 1 fZ(tn)!a,Z(tni)(zn~ak, Zn-i) " pk(t,_1) (4

The probabilities are calculated using the residuals rk(t,) = z, - Hkik(t,) and their covari-

ance matrices Ak(tn) = HkPk(tn,)H rT + Rk. Since these residuals are assumed jointly normally

distributed

since the measurements, zn, are univariate. Since the residuals rk(t,) for the "best" ak should

be small (relative to filter-computed residual variance Ak(t,), the "best" value of ak will have

a high probability assigned by the preceding pk(tn) computation. Similarly, the residuals for a

"mismatched" model should be large and the associated probability should be small [33].

In the recursion calculations of Pk in Equation (14), if any of the Pk became zero, it would

remain zero thereafter. To prevent a set of parameters from getting prematurely discarded, the

probabilities should be given a lower bound which depends on the number of discrete points in the

parameter space [33]. This lower bound permits the probabilities to continue to adapt throughout

the observation set.

The Bayesian minimum mean square error state estimate is the sum of the K discrete state

estimates weighted by their associated probabilities:

K1: p (tnP~,)
k=l

where each kk(tn+) is calculated using a discrete-time Kalman filter with the associated ak value.

Similarly, from Maybeck '31:132-1331, the conditional mean of the unknown parameter a at time t,

is
K=~, .k-P~, (16)
k=1
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and an indication of the precision of this estimate is given by the conditional covariance matrix of

a (t,),

K

Ea(t,)iz, = E{7 a - d(t,)][a - d(t,)iT Z(t) = Z:} = Z_[ak - d(t,)][ak - d(t),rpk(tl) (17)
k=1

The MMAE parameter estimate, Equation (16), and associated variance, Equation (17), can be

used in a method for constructing confidence intervals for the parameter.

Summary

The Kalman filter is an optimal, recursive, next-step prediction algorithm. The Kalman

filter propagates estimates of various states through time and then, using available periodic mea-

surements, updates these estimates. The Kalman filter also provides variance information on the

states.

This chapter has provided the basic foundations of the discrete-time Kalman filter for a time-

invariant linear system with no control inputs, and stationary, normally-distributed dynamics and

measurement noises. In particular, the Kalman filter utilizes a linear stochastic difference equation,

Equation (3), to represent the underlying system. The available measurements, which are univariate

in this application, are related to the states using a measurement model, Equation (4).

This chapter has lso shown how a Kalman filter can be used to model discrete-event simu-

lation output. In order to implement the proposed Kalman filter, several parameters must first be

estimated and this chapter discussed two potential methods for their estimation.

The following chapter provides the methodology for this effort. The methodology applies the

Kalman filter relationships discussed in this chapter to the development of the proposed confidence

interval techniques.
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IV. Methodology

This chapter will cover the development of the Kalman filter techniques for confidence interval

construction. Three different techniques based on the Kalman filter were explored in this research.

The first technique is based on the estimated "best" Kalman filter. The mean value of the parameter

is calculated as the average of all the observations and its associated variance is estimated using

information provided by the Kalman filter. The other two techniques use MMAE to obtain an

estimate of the mean value. One of the MMAE techniques uses a MMAE estimate of the variance

to construct a confidence interval. The other MMAE technique uses a probabilistic approach to

construct a confidence interval based on the MMAE filter's final probabilities. The three techniques

are described in the following sections.

Kalman Filter Variance Approach

This method first requires that the optimal Kalman filter be estimated. This estimated

Kalman filter is referred to as the "best" Kalman filter although its optimality can not be guaran-

teed. As discussed in Chapter III, five parameters must be estimated. Gallagher [1l discusses the

estimation of these five parameters; the procedure discussed below is based on one alternative he

discusses.

The first, and easiest, parameter to estimate is the mean value (tty) of the simulatior output

{Yi, Y2, • • -, yn}. Given a large sample size, the strong law of large numbers [29:292] suggests that

the average of the observations (9) is a good estimator for It.

The variance Qd of the dynamics driving noise wd(t,), and the variance R of the measurement

noise v(t,) are both directly related to the Kalman filter gain K. The Kalman filter gain determines

how much emphasis or weight should be placed on the incoming observations. If Qd is large,

suggesting an imprecise or noisy dynamics model, then the measurements are weighted more heavily,

and thus, the magnitude of K is increased. On the other hand, if R is large, the measurements are

corrupted with a large amount of noise and more emphasis is placed on the dynamics equations,

by decreasing the magnitude of K. When Qd and R are both scalars, as they are in this case, it is

only their ratio, not their individual magnitudes, that determines K. This indeterminacy between
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the two parameters makes it impossible to estimate them both at the same time. Instead, one must

either fix one of them or estimate a scalar that represents their ratio.

Harvey [15:107] suggests one way to approach this problem of estimating both Qd and R.

The Kalman filter gain is solved in terms of the transition matrix parameters and a scalar rather

than Qd, R, P-, and P+. The transition matrix parameters and the scalar can be estimated using

the sample autocorrelations al i least squares estimation.

The Kalman filter gain can be solved without Qd or R as follows. From the Kalman filter

gain equation, Equation (7), with the AR(2) system matrices, Equation (12),

P5 P -+ R

which simplifies to

K P +R (18)

P , +R

Now set the first element of the Kalman filter gain to an unknown scalar, k

gi = k = P1 (19)

and solve for P '- in terms of the other known or estimated parameters. From the covariance
PF +R

update equation, Equation (10),

PP P - FP+R (20)P5P 2 _ "-" P ,;
PC+R PF- j+R

Substituting this result for P+ into the covariance propagation equation, Equation (6), yields

1P, +R P2 - 01 1 Qd 0P- P -P'- -, + (21)1  0 P1i -2 - 4" P22 - [2 0 0 0P,- +R P-, +

28



Solving Equation (21) for P12 produces:

Pi2 = €P1 ¢1P)2 + 02P12 -02 Pd P 2(22)

P j + R Pj + R

Equation (19) yields Pj = k(P + R). Using this result and Equation (22), a solution can be

obtained for -'_2 = K 2P +R

K2- P (lPik - Olk 2  (23)
P j + R 1 - 02 + 02k

Equations (19) and (23) determine the Kalman filter gain K in terms of the autoregressive coeffi-

cients and the scalar k.

For an AR(2) model with measurement noise the the values of 01 and 42 can be estimated

using the lagged autocorrelation coefficients. The simulation output sequence is modeled as an

AR(2) process with measurement noise. Since the filter-design state xi(ti) models the AR(2)

correlated noise term, the autocovariances, -yx1(i), of x1 (t,) are the same as an AR(2) process

without measurement noise [1:204-205]:

(1 -2 Qd7XI (0) =Ck + 02] 01-2) 2 - €2

7X1(1) =x 1_ € (0)

1-2

7X-(2) = € ,(1) + 027xYi(0)

In the Kalman filter terms, the variance of x,(ti) at lag zero is PIj, which therefore equals -y(O),

Pl = -Y.(0).

Using the relationships from Equation (13) and (4), the output sequence y, can be expressed

as

y", = Py - "

-- 'U + Hx(t") + V(t,)

I Y + xl(t.) + (t.)
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Since the measurement noise is assumed independent of the state vector

Var{y. } = E{[py + z(t.) + v(t,)]'} -

= E{X(t,)} + E{v 2(t)} (24)

( Qd + R
=P j+R

The variance of y,,, Equation (24), is the autocovariance at lag zero -yy(O). Since the measurement

noise is uncorrelated in time, the lagged autocovariances of the simulation output is the same as

the filter-design states.

7Y(2))

Thus, the theoretical autocorrelations of the measurements equal

p() -7(1)- 01 (
yV(O) 1 ( \P 17j+R

p(2) - Y(2) = €1p(1) + €2 \p + R

Applying Equation (19),

p(1) k I-

1 - 0

p(2) = ¢IP(1) + 02k

The theoretical autocorrelations (p(i)) can be estimated with the sample autocorrelation coefficients

(r(i)) with the following equation:

EN
r(i) = X( t +)Y - 9)(Y~t-i) - 9) (25)FN I((t -9)

The values of 01 and 02 can be estimated by simultaneously solving the following set of

equations:

-I (26)
1 - 2
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r(2) = 4lr(1) + 4;2k (27)

Thus, for a given value of k = K, one can determine the appropriate value for K 2, using

Equation (23). Equation (25) can be used to calculate values for r(1) and r(2). Then, €1 and ¢2

can be estimated by simultaneously solving Equations (26) and (27). Since k = , and PPf +R'

and R are variances, the value of k is bounded between 0 and 1. Therefore, by searching this range

for k, the least squares estimate can be found.

Using the least squares estimate of k and the associated 01 and 02, along with the corre-

sponding Kalman filter residuals, estimates of Qd and R, and thus P- and P+, can be obtained.

The Kalman filter with the least squares K, and associated j and 2 will provide a sequence of

residuals, {rl, , r 2 , ... , rN }. Based on linear dynamics system theory, these residuals are assumed

to be normally distributed with mean 0 and variance HP-HT + R. This variance is approximated

by the mean squared residual value, N' - I 1 ri . Therefore

N 2 H H T

N - 1Zri HP H +R:Pi- +R (28)
i=1

K, and K 2 are known values (of the "best" Kalman filter) and N _i= r? is easily provided by

pr-cessing the observations through the Kalman filter. Equations (19), (23), and (28) provide a

system of three equations and three unknowns (P j, Pi, and R). The estimated values of these

unknowns can then be easily calculated. From the covariance matrix propagation equation for the

AR(I) model, Equation (21), we obtain

Qd = Pll - ( (41 (0l- + 02 + (02 (01,2 + 02"2+2) (29)

Since the propagation with [ '1 02 ] moves the element of the estimated state vector
1 0 1

i,(t + ) to the second element of the propagated state estimate vector i 2 (t-,), their variances are

equal

P2 = P +  (30)

Using Equations (30), (23), (28), and (20) we can solve Equation (29) for Qd.
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Once this "best" filter has been found an estimate of the process variance (( 2) and mean

variance (,,'uv) can be found. By substituting the estimated parameters into Equation (24), an

estimate of the variance of the output process is obtained.

Fishman [10] estima-es the variance of the mean estimator of an AR(2) process as

_____ Qd
&2 prn. = (31)
a9 =(1 -01 -02) 2  (1-€1 -¢2) 2

where apn is the variance of the process noise.

In order to estimate the variance of the mean estimator we use the fact that, by independence,

the variance of the sum of the measurement noise terms is the sum of their variances. Therefore,

using Equation (24),

Var{I} = Var{k NIy.
Vark 1-- x 1 (tn)} + 1 Z,= Var{v(tn)}

Var{ -I- EN X1(tn)} + R

Using Fishman's approximation, Equation (31), for the variance of the autoregressive portion,

a2 R

Var(A.) -z -2- +  (32)
N(1 01 - k2 )2  N

Fishmans approximation for degrees of freedom d with p 2 [10], is modified by subtracting one

for the estimating of R,

Nd1= - I2 (33)
4 + 442

In summary, this approach searches over the admissible range of the scalar k to determine

which value of k minimizes the sum of the squared residuals. By selecting a value of k, estimates

are obtained for all of the necessary Kalman filter parameters. Using these estimated parameters,

and the sum of the squared residuals, an estimate of the mean estimators variance is obtained from

the modified Fishmans approximation, Equaion (32) (Qd is the estimate of o%2). A confidence

interval is then constructed

The estimation routine discussed above is only one of many possible estimation techniques.
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Mehra [351 discusses several other estimation techniques including those based on maximum likeli-

hood and linear least squares.

MMAE Approach

This technique relies on MMAE as discussed in Chapter III. Under the assumptions of linear

models with white normally-distributed noises, the residuals for each of the k filters in the bank,

rk(t,) = z(t,) - HIk(t,)

are each a white, normally-distributed sequence with zero mean and variance of Ak = HPk HT+Rk.

Using these variances and the values of the residuals, MMAE calculates the probability that the

unknown parameters ak used in each filter are correct. In addition, using Equations (16) and (17),

MMAE estimates the values and variances of the unknown parameters.

Assume there is only one unknown parameter, the simulation output mean g.e. In this case,

each ak becomes a scalar value equal to an estimate of the mean. A bank of filters can be designed

each having a unique value of ak = A.. The A. values can be centered on the average value of

the simulation observations since it is a good estimator for the true mean. Each filter uses the

same K1 , K 2 , 01, 02, P j, and R values (those estimated in the "best" filter from the first Kalman

filter technique). The MMAE probabilities of each filter's mean value being the correct one are

conditioned on the estimated parameters and the measurements. After processing all of the data

through the bank of filters, an MMAE estimate of the mean value and its associated variance are

obtained from Equations (16) and (17).

Before implementing this technique and constructing a confidence interval, several tactical

issues must be decided. These issues are all interrelated and can have a significant impact on the

MMAE estimate of a parameter's mean and variance. These issues are:

1. The spread between the filters with the smallest and largest mean estimate.

2. The number of filters in the bank.

3. The spacing between the filters.

4. The use of the MMAE variance estimate.

33



5. The initial or a priori MMAE filter probabilities.

In most engineering applications, an extensive and detailed model, known as the truth model,

can be generated. The truth model can be used to evaluate a filter's performance and provides

many mathematical techniques for answe -ng the issues listed above [24, 34, 44, 23]. However,

discrete-event simulation is most often applied whei no analytical solution is apparent. Therefore,

no truth model is obvious and heuristics were used to answer these questions.

Issues 1, 2, and 3 are directly related, since each impacts the others. For Issue 1, the total

spread of the filters can be too large or too small. If the spread is too large, then there will be one or

more filters at each end of the bank that consistently ends up with a near-zero probability of having

the correct mean value. Since these filters will provide no information, they are an unnecessary

computational burden and should not be included. However, on the other hand, if the end filters

have a significant probability, then an artificial upper bound on the estimated variance 6r from

Equation (17) is induced. This loss of information can seriously impact the ability to construct a

meaningful confidence interval.

This research, as well as many previous studies [24, 34, 44, 23], has shown that the number of

filters and the spacing between them are critical issues. In general, if the filters are spaced too far

apart, then the probabilities of the filters being correct will concentrate on one or two filters. When

this occurs it is impossible to obtain a reliable estimate of the variance. If the filters are spaced

too close together there will be computational problems. Because of the random component in the

measurements, two or more filters may have nearly equal MMAE probabilities. In other words,

the filter probabilities may switch back and forth between several filters without stabilizing. If the

filters are spaced too close together there is also an identifiability problem in which the residuals

from the two "close" filters will be essentially indistinguishable.

Computational problems can also arise if the filters are spaced at an intermediate spacing

(i.e. in between the two cases mentioned above). Figure 1 shows three possible spacings between

consecutive filters in the MMAE approach. For each arrangement, as shown in Figure 1, the true,

but unknown, value of the mean is the same, and the simulation observation y has the same value.

The MMAE algorithm determines the probability of that particular observation coming from a

process with each filter's mean estimate. For each simulation observation the filter closest (as
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Figure 1. Filter Spacing
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I y observation

LEGEND: true value of mean

I filter location

determined by the filter's mean value) to the observation, as indicated in Figure (1) will receive

the highest probability of being the correct filter. For a simulation observation near the true

mean, the filter with mean estimate closest to the true mean should receive the highest probability.

The distance between the filter with the highest probability and the true mean is largest in the

moderately-spaced filters ("7 Filters" in Figure 1). The moderately-spaced filters may, therefore,

introduce a bias into the MMAE estimate of the mean value. However, widely-spaced filters ("3

Filters" in Figure 1) may lead to a crude MMAE estimate of the mean, and closely-spaced ("11

Filters" in Figure 1) filters may have problems with filter probabilities not stabilizing. Without

a truth model, a hueristic approach was to use the smallest number of filters and as wide a total

spread, as possible, without degrading the estimates obtained. This ensured no loss of information

and computational efficiency.

To construct a confidence interval, one must assume or approximate the underlying distri-

bution of the parameters estimator. Usually an estimate of the mean and its associated variance,

along with an assumed probability distribution is used. For example, the classical statistics method
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presented in Chapter II, Equation (2), assumes a t distribution. A confidence interval is then con-

structed using the estimate of the mean and its associated variance and an appropriate multiplier

(e.g. a t critical value). The MMAE estimate may or may not be based on an assumed distribu-

tion. Two possible alternatives are 1) estimating the variance of the mean estimate with MMAE

and assuming a t distribution, or 2) using the calculated final MMAE probabilities as a discrete

approximation of the parameters distribution and construct a (1 - a) percent "probability interval"

by finding the range of filters that contains (1 - a) percent of the probabilities. If all of the Kalman

filter parameters were known, not estimated as in this application, the probability interval would

have a different meaning than a typical confidence interval. Basically, the probability interval would

be a stricter statement that one is (1 - a) percent sure that the true value of a given parameter

is contained in every constructed interval. However, since the MMAE approach used is based on

several estimated parameters this "probability interval" will probably be closer to a confidence

interval as discussed in Chapter II . One way of inducing a t distribution might involve uneven

spacing between adjacent filters in an MMAE model. If a t distribution is assumed or induced, the

degrees of freedom would be the number of filters minus one. One degree of freedom was lost since

the filters are centered on an estimated mean.

Summary

This chapter provided the methodology for using the Kalman filter developed in the previous

chapter in constructing confidence intervals. Three different construction techniques were proposed.

The first construction technique uses a single Kalman filter to provide an estimate of the

mean and its associated variance. A routine for estimating the necessary Kalman filter parame-

ters was discussed. After estimating these parameters an estimation of the mean and its variance

can be found using modified forms of two approximations given by Fishman [10], shown in Equa-

tions (32) and (33). Using these estimates for the mean and its variance, a confidence interval can

be constructed using Equation (2).

The other two techniques use MMAE. The MMAE approaches approximate the unknown

continuous parameter space with discrete points and runs a Kalman filter at each of these points.

After processing the observations through the bank of filters, estimates of both the mean and its
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associated variance are obtained using Equations (16) and (17). The first MMAE technique uses

these two estimates and Equation (2) to construct a confidence interval in the normal fashion.

The second approach uses the final filter probabilities to estimate the region that contains (1 - a)

percent of the probabilities. When using MMAE there are numerous tactical issues that must be

decided (e.g., number of filters, and spacing between the filters). This chapter provided a discussion

on the impact each of these issues can have on the estimates provided by MMAE.

The following chapter discusses the results of the Monte Carlo analysis; comparing these

proposed confidence interval techniques with the widely-accepted techniques.
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V. Monte Carlo Analysis

This chapter discusses the Monte Carlo analysis of the various confidence interval construction

techniques. The four major areas discussed are confidence interval techniques, data selection,

baselirne Monte Carlo results, and fine tuning of the MMAE technique.

Confidence Interval Techniques

The first step in conducting a Monte Carlo analysis was to develop computer routines to

calculate confidence intervals based on the current techniques discussed in Chapter II and the new

techniques proposed in Chapter III. Computer routines for three (nonoverlapping batch means,

overlapping batch means, and standardized time series) of the five techniques discussed in Chapter

II were written in FORTRAN. The routine for nonoverlapping batch means is based on the method-

ology given by Kang and Goldsman f20:16]. The overlapping batch means code is based on Meketon

and Schmeiser's methodology [37]. The standardized time series code uses Schruben's standardized

sum methodology [42:1099). A FORTRAN computer routine, written by Fishman [10], for estimat-

ing a parameters mean, variance, and associated degrees of freedom based on the autoregressive

method, was modified to construct confidence intervals and to run on available computers. Spectral

Analysis was not used due to its computational difficulties. Routines were developed for both of

the Kalman filter techniques discussed in Chapter IV. Table 1 gives the names and purpose of

each of the computer subroutines for confidence interval construction. The FORTRAN codes are

contained in Appendix A.

Data Selection

To evaluate the confidence interval construction techniques, the models that would generate

the data had to be selected. Models with analytical mean estimates were necessary to evaluate

coverage rates. Two types of data were used in this study and E.,h are discussed in the following

sections.

AR(2) Data. Since the underlying system equations for the Kalman filter are estimated as an

AR(2) process, data generated as an AR(2) process was chosen as one of the test ca.es to compare
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Table 1. Computer Routines For Confidence Interval Construction

KFMAIN r Main program for both Kalman filter techiques.
ESTPAR Estimates p(1) and p(2) from the data. Celculates sample autocorrelations.
SEARCH Searches over the admissible range of k to find the value that minimizes the squared

sum of residuals.
CHECK Function that determines if, for a given a value of k, corresponding €1 and 02 values

(as estimated by ESTPHI) are available in the stationary region for an AR(2) process.
If they are, it calls KFRESID and returns the value of the residual sum of squares for
a filter with those values.

ESTPHI Given a value of k, estimates the corresponding t1 and 02 values.
KFRESID Processes a set of data through a given Kalman filter and calculates squared sum of

residuals.

GETPQR Calculates the values of Qd and R.
MAINB Main program for the three techniques (NOBM, OBM, STDS) that require the selection

of either number of batches or batch size (program calculates intervals for three different
batch sizes per sample size).

NOBM Calculates std dev for nonoverlapping batch means method.
OBM Calculates std dev for overlapping batch means rflethod.
STDS 1 Calculates std dev for standardized time series method.

MAINNB Main program for techniques not requiring selection of batch size (currently only
AUTOR).

AUTOR I Calculates std dev and t-crit for autoregressive method.
CI I Given sample size, number of batches, and method (e.g., NOBM), actually constructs

c.i. and keeps track of statistics for Monte Carlo analysis.
SLAMCOM Common block of variables used in most of the routines.
COMVAR Common block of variables used in the Kalman filter routines.
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Table 2. AR(2) Test Cases
Case 01 02 0 2  M.1

1 0.5 0.3 1.0 0.0
2 0.5 0.3 1.0 1.0
3 -1.0 -0.5 1.0 0.0
4 -1.0 -0.5 1.0 1.0
5 -0.5 0.3 1.0 0.0
6 -0.5 0.3 1.0 0.0

the different confidence interval techniques. AR(2) processes are easily modeled using FORTRAN

routines and offer analytical solutions for mean values. The general formula for an AR(2) process

was modified to allow for the addition of a measurement noise to each generated observation. Thus

the process is modelled with the following two equations:

X, = 1X -l + € 2 Xi- 2 + E(pn),

Z = Xi E(mn),

where is a constant

€1 is the first autoregressive coefficient

02 is the second autoregressive coefficient

c(pn) is a white, Gaussian process noise with mean 0 and variance aU2 (Qd in the Kalman

filter)

E(mn) is a white, Gaussian measurement noise with mean 0 and variance ann (R in the

Kalman filter)

Six different AR(2) Cases were chosen for this study. The six cases and their associated

parameters are summarized in Table (2). These cases (all of which are stationary) were chosen

because they each exhibit different autocorrelation and partial autocorrelation functions and thus

will subject the techniques to a wide range of output. If the Kalman filter parameters are cor-

rectly estimated, Qd =~ and 1 7 = . Since the Kalman filter can identify the presence of

measurement noise and estimate its variance, the Kalman filter techniques should outperform the
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Table 3. Computer Routines for AR(2) Data Generation

ARGEN Generates data from an AR(2) process, and passes the output on to the baseline Monte i
Carlo analysis programs.

NORM Generates Normal(0,1) pseudorandom variates, I

STDEV Calculates the mean, variance, and standard deviation of a sample.
MARGEN Similar to ARGEN, but used for comparing the MMAE technique with various selections

for number of filters and spacing of filters.

conventional techniques when a measurement noise is present. The odd numbered cases have no

measurement noise, where the even numbered have measurement noise.

FORTRAN programs were written to generate the AR(2) data. Table 3 provides a brief

description of the routines, which are contained in Appendix B. MARGEN is simply a modified

version of ARGEN and is not contained in the appendix.

M/M/1 Data. The next type of data used to evaluate the techniques was M/M/l queueing

simulations. Sheldon and Ross [39:343] define queueing models as those models that deal with

systems where entities arrive at a service area according to a random process. After arrival, they

are either served immediately, or they wait in line until they can be served. After service, tile

customer leaves the system. The queueing models used in this study are M/M/1. These queues

exhibit exponential (Markovian) distributions for both interarrival and service times and have a

single server with infinite queue capacity [17:90]. M/M/1 queueing models are useful in simulation

research because the output parameters have analytical solutions, and it is easy to model the queues

as discrete-event simulations. However, M /M/I1 queues have very complex statistics associated with

them, and it is difficult to construct good confidence intervals for their parameters.

Four different M/M/1 cases were chosen for this study. The four cases and their associated

parameters are summarized in Table (4). Average waiting time in the queue is a "statistic based

upon observations", and average number in the queue is a "statistic based upon a time persistent

variable". The traffic intensity is simply the ratio of arrival rate (how many entities arrive per unit

time) to service rate (how many entities are serviced per unit time). Therefore, as traffic intensity

increases the system becomes more "congested", the output sequence autocorrelation increases,
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Table 4. M/M/1 Test Cases
Case Output Parameter 1 Traffic Intensity

1 Average Waiting Time in Queue 0.5
2 Average Waiting Time in Queue 0.8

3 Average Number in Queue 0.5
4 Average Number in Queue 0.8

Table 5. Computer Routines for M/M/1 Data Generation

SLM FORTRAN inserts for SLAM II model that generates waiting times.
INTLC SLAM II FORTRAN insert that is called before each run to initialize certain parameters.

OTPUT Routine in SLM
EVENT SLAM II FORTRAN insert that actually records parameter of interest.
SLM2 Similar to SLM, but used for number in queue
MSLM Similar to SLM, but used only for comparing the MMAE technique with various pa-

rameters (e.g. of filters).
MSLM2 Similar to SLM2, but used only for comparing the MMAE technique with various pa-

rameters (e.g. of filters).
SLCOD SLAM II network statements for SLM and MSLM.

SLCOD2 SLAM II network statements for SLM2 and MSLM2.

and, in general, it is harder to estimate the true values of the systems parameters. Two different

traffic intensities (0.5 and 0.8) were examined. These traffic intensities are typical of those seen in

other confidence interval studies. For the traffic intensity of 0.5 the specific inter-arrival and service

times used were 2 and 1. For the traffic intensity of 0.8 the specific service and inter-arrival times

were 5/4 and 1.

The MIM/1 data was generated using SLAM II [38] with FORTRAN inserts. A brief descrip-

tion of the codes are given in Table 5. The SLAM II network statements and FORTRAN inserts

for SLM, INTLC, OTPUT, EVENT, and SLCOD are contained in Appendix C. The remaining

routines are simply modified versions of the others and are not included in the appendiy.
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Table 6. Computer Routines for Monte Carlo Analysis

INITIAL Initializes parameters for the Monte Carlo analysis.

CONTROL Changes the sample size for the analysis (program calculates intervals for three different
sample sizes).

FIGURE Calculates performance measures (e.g., actual coverage, average half width, etc.) after-1
all runs are completed.

OUTPUT Produces output files of data.
GETMX j After CONTROL selects data size this routine calculates the mean of that sample size.

Baseline Monte Carlo Anlaysis Results

This section presents the results of the baseline Monte Carlo analysis used to compare the

various techniques for confidence interval construction. The methods are compared and contrasted

based on their respective coverage rates, average half widths, and standard deviation of the half

widths. As discussed in Chapter II, practitioners want a method that provides actual coverage equal

to nominal coverage, while keeping the average half width as small as possible, and the standard

deviation of the half width values as low as possible.

The Monte Carlo analysis involved 1000 runs on each case with a nominal coverage rate of

90 percent. Three different sample sizes were selected: 1280, 2560, and 5120. For those methods

requiring a selection of batch size, three different sizes (for each sample size) were selected. These

batch sizes correspond to 1/5, 1/10, and 1/20 of the total sample size. These sample sizes and

batch sizes were selected to correspond to a similar analysis by Law and Kelton [29:563].

Computer routines were written in FORTRAN to conduct the Monte Carlo analysis. A

brief description of these routines is given in Table 6, and the FORTRAN codes are contained in

Appendix D.

Six tables are generated for each of the 10 models (6 AR(2) cases and 4 M/M/1 cases). The

six tables present the following information:

1. Actual coverage rates.

2. Average half widths.

3. Standard deviation of half widths.
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4. Estimated Kalman filter parameters.

5. Average bias of 9P (as estimated by the average of the simulation observations) and y (as

estimated by MMAE) from the theoretical (analytically determined) value of 1.

6. The standard deviation of the mean estimates errors in Number 5.

The first three tables present the information for each of the methods as a function of data

size and, where appropriate, batch size. The batch size can be determined by dividing the data size

by the numbers (5, 10, and 20) listed under the methods. The information presented in the last

three cases are not dependent on batch size. All of the tables in this section use the case numbers

presented in Tables 2 and 4.

The baseline MMAE method used 21 filters (ten on each side of the center filter and the center

filter). For the baseline MMAE method the filters were evenly spaced for computational ease. The

two end filters were placed at 9 ± 5&r where 9 is simply the grand average of the data. &9 is the

estimated variance of 9 using the modified Fishman's approximation, Equation (32), as discussed

in Chapter IV. The a pricri probabilities of the filters were set at a triangular distribution in which

the two end filters each had a probability of and the center filter had a probability of

N1 where N1 is the total number of filters used. This type of triangular distribution was

2)

hoped to provide a rough approximation of a normal distribution. A ncr,. al distribution was used

since the technique utilizes a t-critical value in constructing a confidence interval.

The method names are abbreviated in the tables according to the following notation:

" NOBM - Nonoverlapping Batch Means

" OBM - Overlapping Batch Means

" STDS - Standardized Time Series

* AUTO - Autoregressive

" SKF - Kalman Filter using Modified Version of Fishman's Approximation for a 2

* MMAE - Multiple Model Adaptive Estimation with 21 filters evenly spaced ±5aV (as esti-

mated above) around the MMAE's estimate of 1.
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Table 7. Actual Coverage Rates (AR(2) Case 1)

Data NOBM OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 _

1280 0.910 0.899 0.884 0.910 0.885 0.877 0.899 0.887 0.848 0.897 0.898 0.887
2560 i 0.899 0.895 0.891 0.905 0.890 0.888 0.905 0.881 0.869 0.896 0.897 0.885
5120 0.907 0.910 0.909 0.915 0.914 0.913 0.912 0.908 0.899 0.918 0.922 0.910

Note: With nominal rate of 0.9, estimation accuracy is z ±0.016 for 1000 runs.

AR(2) Results. The first results are from the six AR(2) cases described in Table 2. The

results from each case are discussed below.

A(2) Case 1 (1= 0. 5, 2 =0.3,2 = 1.0, 2  0.0). The results from this model

are presented in Tables 7-12. Table 7 indicates that virtually all of the methods achieved nomiual

coverage of 0.90. As expected, coverage generally increases as sample-size increases. With data size

of 5120, SKF and AUTO gave the highest coverage, which is not surprising considering that both

of these methods are based on autoregressive models and were applied to AR(2) data. NOBM,

OBM, and STDS coverage tend to increase (sometimes marginally) as batch size increases (and

thus number of batches decrease). For large sample size, OBM offered higher coverages thun both

NOBM and STDS. At small sample sizes, NOBM (particularly when used with a small number

of batches) has the highest coverage rate. The estimation accuracy of ±0.016 makes it impossible

to draw conclusions as to which method is superior, since many of the coverage rates are equal

within this accuracy. One should consider that an actual coverage rate that is higher than nominal

coverage is not desired. Actual coverage rates should be examined in conjunction with average half

widths since wide confidence intervals tend to increase coverage.

Table 8 shows that, in addition to coverage rates that exceed or are equal to nominal coverage,

AUTO and SKF have tighter intervals than the other methods. For NOBM, OBM, and STDS, as

the number of batches increase the average half widths decrease.

Table 9 indicates that for this case AUTO and SKF have small values, when compared to

the other techniques, for the standard deviation of the half widths. This appears to be a major

advantage of these methods. These tables also illustrate a point discussed by Law and Kelton
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Table 8. Average Half Width (AR(2) Case 1)

Data NOBM OBM i STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 _

1280 0.278 0.242 0.226 0.259 0.235 0.223 0.255 0.228 0.203 0.231 0.232 0.220
2560 0.194 0.173 0.164 0.182 0.168 0.161 0.186 0.168 0.156 0.163 0.164 0.157
5120 0.139 0.123 0.118 0.129 0.120 0.116 0.133 0.122 0.115 0.115 0.116 0.111

Table 9. Standard Deviation of Half Widths (AR(2) Case 1)

Data NOBM F OBM STDS AUTO SKF MMAE
Size' 5 10 20 5 10 20 5 10 20
1280 0.103 0.060 0.038 0.077 0.050 0.033 0.085 0.052 0.033 0.028 0.025 0.024

2560 0.073 0.042 0.027 0.052 0.034 0.023 0.061 0.038 0.025 0.013 0.012 0.015
5120 j 0.052 0.030 0.019 0.036 0.024 0. 0.044 0.028 0.019 0.007 0.006 0.009

L29:563]. Table 7 showed that as batch size increased so did coverage, but Table 9 shows that

corresponding to this increase is an inherent instability in the intervals half widths.

The estimated Kalman filter parameters (from method SKF ) and their associated standard

deviations are listed in Table 10. The estimates for all of the parameters are very close to the

values used to generate the data. Due to the lack of measurement noise, k 1 is near 1.0 and the

Kalman filter is placing a high weight on the incoming measurement and virtually disregarding the

dynamics model. As sample size increases, the estimates become closer to the theoretical value

and their standard deviation goes down. The estimated Qd/R ratio for this case is approximately

150. The true ratio is 0 since there is no measurement noise R in this case. The estimated ratio is

very large because R was estimated slightly higher than 0. As the estimate approaches infinity it

indicates the estimated ratio is getting closer to the theoretical ratio.

Table 11 shows the average error of the estimated mean value from the theoretical value is

virtually identical for both estimators. The average error is almost always near zero. Table 12

shows the standard deviation decreased as sample size increased. Tables 11 and 12 are indicative of

the trends seen in the average errors of the mean estimators and standard deviation of these errors

for all of the AR(2) cases. Therefore, for the remaining five AR(2) cases, these two tables are not
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Table 10. Estimated Kalman Filter Parameters (AR(2) Case 1)
Data Size A Q R /1  k2 1

1280 0.9983 0.9821 0.0121 0.9879 0.0061 0.5054 0.2957
Mean 2560 0.9995 0.9872 00092 0.9908 0.0046 0.5048 0.2977

5120 0.9999 0.9910 0.0066 0.9934 0.0033 0.5032 0.2988
1280 0.0408 0.0453 0.0161 0.0161 0.0080 0.0282 0.0273

St. Dev. 2560 0.0283 0.0318 0.0114 0.0114 0.0057 0.0203 0.0191
5120 0.0195 0.0221 0.0082 0.0082 0.0041 0.0138 0.0129

Table 11. Average Mean Estimation Errors (AR(2) Case 1)
Data Size 9 MMAE Estimate of A.

1280 0.0001 -0.0006
2560 0.0038 0.0035
5120 0.0022 0.0021

presented.

AR(2) Case 2 (01= 0.5,02 = 0.3, a = 1.0, a,2 -1.0). The results from this model

are presented in Tables 13-16. Table 13 shows that again most of the methods achieved nominal

coverage. As expected, coverage generally increases as sample size increases. The same trends for

sample size and batch size that were pointed out for Case 1 also are apparent. The coverage rates

for NOBM, OBM, and STDS are approximately equal to those obtained for the first case. The

coverage rates for AUTO increased with the addition of the measurement noise. A surprising result

is that the coverage for SKF and MMAE increased when the measurement noise was added.

The change in coverage rates from Case 1 to this case can be explained further by looking at

the average half widths in Table 14. The half widths for NOBM, OBM. and STDS either remained

Table 12. Standard Deviation of Mean Estimation Errors (AR(2) Case 1)
Data Size 9 MMAE Estimate of

1280 0.1364 0.1361
2560 0.0985 0.0991
5120 0.0683 0.0683
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Table 13. Actual Coverage Rates (AR(2) Case 2)

Data I NOBM OBM STDS AUTO SKF T MMAE
Size 5 10 20 5 10 20 5 10 20 _ I

1280 0.902 0.897 0.884 0.902 0.886 0.881 0.888 0.881 0.853 0.859 0.907 0.899
2560 0.901 0.896 0.881 0.904 0.886 0.884 0.922 0.885 0.876 0.875 0.909 0.896
5120 1 0.912 0.903 0.912 0.913 0.912 0.910 0.903 0.907 0.899 0.901 0.933 0.922

Note: With nominal rate of 0.9, estimation accuracy is ;- ±0.016 for 1000 runs.

Table 14. Average Half Width (AR(2) Case 2)

Data NOBM OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20
1280 0.285 0.248 0.231 0.264 0.240 0.227 0.261 0.233 0.208 0.212 0.247 0.235
2560 0.198 0.176 0.167 0.186 0.171 0.165 0.189 0.171 0.159 0.154 0.176 0.168
5120 0.142 0.125 0.120 0.132 0.122 0.118 0.135 0.124 0.117 0.111 0.125 0.119

the same or increased marginally, SKF and MMAE half widths increased a larger percentage and

AUTO half widths actually decreased. This seems to point out the benefit of the Kalman filter

techniques to isolate measurement noise from the process noise. The same trends pointed out for

the standard deviations of the half widths in Case 1 are evident in Table 15 for this case.

The estimated Kalman filter parameters (from method SKF) and their associated standard

deviations are listed in Table 16. The filter tends to underestimate R and overestimate Qd. The

estimated ratio of Qd/R is approximately 2.5, whereas the true ratio is 1. As expected, with the

addition of measurement noise the Kalman filter gain, K, decreases. However, the gain still is

Table 15. Standard Deviation of Half Widths (AR(2) Case 2)

Data NOBM OBM STDS AUTO SKF MMAE
j Size 5 10 20 5 10 20 5 10 20

1280 0.105 0.061 0.039 0.078 0.050 0.033 0.086 0.053 0.034 0.030 0.031 0.030
2560 0.074 0.042 0.028 0.053 0.034 0.023 0.062 0.039 0.025 0.015 0.015 0.015

I 5120 _ 0.052 0.031 0.019 0.037 0.024 0.016 0.044 0.028 0.019 0.008 0.008 0.007
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Table 15. Estimated Kalman Filter Parameters (AR(2) Case 2)

Data Size - Qd A /t 1  fk2  01 02

1280 2.2344 1.4867 0.5975 0.7327 0.0982 0.4654 0.3019

Mean 2560 2.2377 1.4836 0.6015 0.7312 0.0999 0.4691 0.3025
5120 2.2389 1.4807 0.6046 0.7300 0.±006 0.4698 0.3035

F 1280 0.0892 0.1435 0.1119 0.0488 0.0158 0.0440 0.0501

St. Dev. I 2560 0.0632 0.0991 0.0776 0.0336 0.0111 0.0321 0.0363

5120 0.0454 0.0682 0.0541 0.0232 0.0079 0.0232 0.0258

rather large due to the underestimation of R. Furthermore, the addition of measurement noise

caused an underestimation of the value of 01.

AR(2) Case 3 (01 = -1.0,02 = -0.5, or - 1.0, M, = 0.0). The results from this

model are presented in Tables 17-20. Table 17 shows that virtually all of the methods achieved

nominal coverage. There are some interesting comparisons between this case and the two previous

cases. First, both SKF and MMAE are obtaining a smaller coverage than before. NOBM and

OBM coverage marginally increased at the larger sample sizes and increased even more at the

small sample size. In fact, NOBM and OBM had larger or equal actual coverage rates at smaller

sample sizes than at larger sample sizes. STDS coverage greatly increased. In the previous cases,

as batch size went up so did coverage, whereas in this case it is just the opposite; as batch size

is reduced (and number of batches grows) coverage increases. These differences can be attributed

to the nature of this particular AR(2) process. As discussed by Box and Jenkins [4:59], an AR(2)

process with these autoregressive coefficients exhibit pseudo-periodic behavior and the negative

correlation is induced. The random shocks cancel this effect when the observations are summed

into batches. Even though SKF and MMAE coverage decreased, near nominal coverage is still

achieved.

The unique nature of this AR(2) process is again evident in Tables 18 and 19. The average half

widths are much smaller than in the previous cases. For example, the half width for MMAE with

a sample size of 5120 is almost 0, yet the coverage is still equal to nominal coverage. These results

are caused by the high negative correlation in the output sequence, which significantly reduces the

variance of the mean estimates.
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Table 17. Actual Coverage Rates (AR(2) Case 3)

Data NOBM OBM STDS AUTO SKF MMAE
Size 1 5 10 20 5 10 20 5 10 20 _

1280 0.917 0.909 0.924 0.921 0.906 0.916 0.915 0.921 0.955 0.896 0.899 0.883
2560 0.902 0.902 0.903 0.915 0.905 0.909 0.914 0.913 0.921 0.891 0.892 0.880
5120 0.903 0.918 0.920 0.919 0.916 0.922 0.916 0.930 0.931 0.915 0.920 0.906

Note: With nominal rate of 0.9, estimation accuracy is z ±0.016 for 1000 runs.

Table 18. Average Half Width (AR(2) Case 3)

Data NOBM OBM STDS AUTO SKF MMAE'
Size 5 10 20 5 10 20 5 10 20 _ _ i
1280 0.023 0.021 0.021 0.022 0.020 0.020 0.022 0.022 0.023 0.018 0.018 0.018
2560 0.016 0.014 0.014 0.015 0.014 0.014 0.016 0.015 0.015 0.013 0.013 0.012
5120 0.011 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.010 0.009 0.009 0.009

In Table 20 we see that the Kalman filter estimates for A, Qd, R, K1 , and k 2 are very

similar to those in Case 1 where there also was no measurement noise. The estimated Qd/R ratio

is approximately 500, indicating that the estimated ratio is more accurate than it was in Case 1.

The estimates of the 0 value, are also very close to the values used to generate the data.

AR(2) Case 4 (01= -1.0,02 = -0.5,a = 1.0, a2 = 1.0). The results from this

model are presented in Tables 21-24. The addition of measurement noise to this AR(2) model

caused trends different from those seen when measurement noise was added to Case 1. Table 21

shows that actual coverage rates for all of the techniques decreased with the addition of the mea-

Table 19. Standard Deviation of Half Widths (AR(2) Case 3)

Data NOBM F OBM STDS AUTO SKF % MMAE
Size 5 10 20 5 10 20 5 10 20 __ _

111280 0.009 0.005 0.003 0.006 0.004 0.002 0.007 0.005 0.004 0.001 0.000 0.000
2560 0.006 0.003 0.002 0.004 0.003 0.002 0.005 0.003 0.002 0.001 0.000 0.001
5120 0.004 0.002 0.002 1 0.003 0.002 0.001 0.004 0.002 0.002 0.000 0.000 0.001
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Table 20. Estimated Kalman Filter Parameters (AR(2) Case 3)
Data Size A Qd f 1  k 2  j ¢2

1280 0.9991 0.9906 0.0037 0.9963 -0.0038 -1.0078 -0.5066
Mean 2560 0.9999 0.9938 0.0027 0.9973 -0.0027 -1.0054 -0.5047

5120 1.0001 0.9956 0.0020 0.9980 -0.0020 -1.0044 -0.5038
1280 0.0410 0.0420 0.0044 0.0044 0.0044 0.0262 0.0254

St. Dev. 2560 0.0283 0.0292 0.0029 0.0029 0.0029 0.0183 0.0178
5120 0.0195 0.0200 0.0018 0.0018 0.0018 0.0128 0.0127

Table 21. Actual Coverage Rates (AR(2) Case 4)

Data NOBM OBM STDS j AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20
1280 0.906 0.899 0.896 0.913 0.893 0.897 0.892 0.900 0.904 0.897 0.849 0.828
2560 0.897 0.894 0.904 0.901 0.902 0.910 0.895 0.909 0.903 0.914 0.855 0.840
5120 0.893 0.911 0.903 0.901 0.901 0.898 0.902 0.904 0.902 0.905 0.863 0.841

Note: With nominal rate of 0.9, estimation accuracy is ±0.016 for 1000 runs.

surement noise. As in Case 3, actual coverage rates for NOBM, and OBM generally decreased as

sample size increased.

Table 22 shows an increase in the average half widths due to the addition of measurement

noise. The decrease in actual coverage rates and increase in half widths indicates that the addition

of measurement noise had a detrimental impact on the negatively correlated AR data.

The estimated Kalman filter parameters (from method SKF) and their associated standard

deviations are listed in Table 24. As in Case 2, the filter tends to underestimate R and overestimate

Table 22. Average Half Width (AR(2) Case 4)

P-.a NOBM OBM STDS AUTO SK :  MMAE
Size 5 10 20: 5 10 20 5 10 20
1280 0.061 0.054 0.052 0.057 0.052 0.051 I0.058 0.054 0.053 0.051 0.045 0.043
2560 0.043 0.038 0.037 0.040 0.037 0.036 0.041 0.038 0.037 0.036 0.032 0.030
5120 0.030 0.027 0.026 0.028 0.026 0.025 1 0.029 0.027 0.026 0.025 0.022 0.021
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Table 23. Standard Deviation of Half Widths (AR(2) Case 4)

Data! NOBM I OBM STDS AUTO SKF I MMAE
Size 5 10 20 5 10 20 5 10 20 _ _ _

1280 10.022 0.013 0.008 0.015 0.010 0.007 0.018 0.012 0.008 0.004 0.002 0.002
2560 0.015 0.009 0.006 0.011 0.007 0.005 0.013 0.008 0.006 0.002 0.001 0.001
5120 0.011 0.006 0.004 0.008 0.005 0.003 0.009 0.006 0.004 0.001 0.000 0.000

Table 24. Estimated Kalman Filter Parameters (AR(2 Case 4)

Data Size A d k K 2  01 02

1280 2.5549 1.4754 0.6733 0.7365 -0.1581 -0.9115 -0.4240
Mean 2560 2.5557 1.4721 0.6761 0.7354 -0.1590 -0.9118 -0.4244

5120 2.5589 1.4703 0.6787 0.7348 -0.1597 -0.9132 -0.4253
1280 0.1059 0.1645 0.0970 0.0362 0.0189 0.0630 0.0532

St. Dev. 2560 0.0725 0.1159 0.0671 0.0254 0.0132 0.0442 0.0373
5120 0.0522 0.0792 0.0475 0.0176 0.0091 0.0306 0.0258

Qd. The estimated Qd/R ratio of is approximately 2.2; again indicating that when measurement

noise is present the ratio is estimated to be over twice it's theoretical value. As expected, with

the addition of measurement noise, the Kalman filter gain, K, decreases. However, the gain still

is rather large due to the underestimation of R?. The addition of measurement noise caused an

underestimation of the value of 01.

.0R(2) Case 5 (1 -0. 5, 02 =0. 3 1 mn0 cr2  0.0). The results from this model

are presented in Tables 25-28. This AR(2) model has actual coverage rates, shown in Table 25,

similar to those seen in Case 1.

The average half widths for this case, listed in Table 26 are, smaller than those found in

Case 1. According to Box and Jenkins '4:591, an AR(2) process with coefficients similar to this case

will exhibit an autocorrelation function that alternates in sign as it damps out. This alternating

effect causes a reduction in the overall variance and thus tighter half widths.

The remaining tables for this case demonstrate the same trends as seen in Case 1. In par-

ticuiar, notice the tight half widths and low variability associated with the two Kalman filter
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Table 25. Actual Coverage Rates (AR(2) Case 5)

Data., NOBM OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 _

1280 0.908 0.910 0.903 0.914 0.899 0.895 0.902 0.910 0.909 0.895 i 0.892 0.876

2560 0.904 0.897 G.891 0.911 0.901 0.898 0.908 0.905 0.901 0.892 0.895 0.882
5120 0.902 0.912 0.916 0.917 0.914 0.914 0.918 0.916 0.910 0.914 0.914 0.901

Note: With nominal rate of 0.9, estimation accuracy is : ±0.016 for 1000 runs.

Table 26. Average Half Width (AR(2) Case 5)

Data I NOBM OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 ___

1280 0.047 0.042 0.040 0.044 0.041 0.039 0.044 0.042 0.041 0.038 0.038 0.036
2560 0.032 0.029 0.028 0.031 0.028 0.028 0.032 0.029 0.028 0.027 0.027 0.026
5120 0.023 0.021 0.020 0.022 0.020 0.020 0.022 0.021 0.020 0.C19 0.019 0.018

techniques.

A R (2) Case 6 (1 - 0.5,02 =0. 3, = 1.0, = 1.0). The results from this model

are presented in Tables 29-32. Table 29 shows that most of the methods achieved nominal coverage.

With the addition of the measurement noise most of the actual coverage rates decreased, especially

for the large sample size.

The average half widths for this case, in Table 30, have all increased from those in Case 5.

The results are similar to those seen in Case 4. The remaining tables for this case show trends

exactly like those found in Cases 2 and 4 where measurement noise was also present.

Table 27. Standard Deviation of Half Widths (AR(2) Case 5)

Data NOBM OBM STDS AUTO SKF MMAE

Size 5 10 20 5 10 20 5 10 20
1280 0.017 0.010 0.007 0.013 0.008 0.005 0.015 0.009 0.006 0.003 0.002 0.002
2560 0.012 0.007 0.005 0.009 0.006 0.004 0.010 0.007 0.004 0.001 0.301 0.002
5120 0.009 0.005 0.003 0.006 0.004 0.003 0.007 0.005 0.003 0.001 0,000 0.001
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Table 28. Estimated Kalmnan Filter Parameters (AR(2) Case 5) ___

Data Size A Qd R K, Kt2  01 2

1280 -~0.9984 0.9819 0.0123 0.9877 -0.0062 1-0.5095 0.29412
%lean 2560 0.9996 0.9875 0.0089 0.9910 -0.0045 -0.5064 0.2970

5120 0.9999 0.9909 0.0067 0.9933 -0.0034 -0.5050 0.2981
1280 j0.0409 0.0456 0.0162 0.0162 0.0081 0.0296 0.0283

St. Dev. 2560 0.0282 0.0319 0.0114 0.0114 0.0058 0.0208 0.0198
5120 0.0195 0.0224 0.0082 0.0083 0.0042 0.0142 0,01,10

Table 29. Actual Coverage Rates (AR(2) Case 6)

Data NOMOBMl STDS AUTO SKF M-MAE
Sizei1 5 10 20 5 10 201 5 10 20

1280 0.904 0.901 0.897 0.903 0.892 0.904 0.904 0.910 0.900 0.898 0.896 0.884
2560 [0.898 0.901 0.906 10.908 0.908 0.908 0.908 0.903 0.910 0.896 0.906 i0.886

.512(0 0.911 0.904 0.899 0.904 0.901 0.898 0.904 0.899 0.906 0.899 0.903 0.883
Note: With nominal rate of 0.9, estimation accuracy is z-±0.016 for 1000 runrs.

Table 30. Average Half Width (AR(2) Case 6)

Data NOBM OBM STDS AUTO SKF M MA E
Size 5 10 20 5 10 20 5 10 20

1280 0.074 0.065 0.063 0.68 -0.06 3 0061 0.070- 0.065 0.063 10.060 0.060- 0---.057-

2560 (0.052 0.046 0.044 0.0418 0.04 0.043 1 0.049 0.045 0.044 0.042 0.0.12 0.0-(0
51201 0. 03 7 0.032 0.031 0.034 U3 0.031 01 0.035 0.032 0.031 1 0.030 0.030 0 .029

Table 31. Standard IDeviatlon of Half Widths (AR(2) Case 6)

Data NOBM BHM STDS A UTO S K F %1 %AV
Size 5 10 20 5 10 20 5 10 201
[280 0.027 0.016 0.010 0.019 0.012 0.008 OO2 0.014 0.010 10.006 0. 003 0.003
2560 0.0 19 0.011 0.007 0.01'1 1)09 0.006 0.016 0.010 0.007 0.0(12 0.0(02 001
.5120 0.013 0.008 0.005 0.009 006004 0.011 0.007 0.005 0.001 0.00)1 (11
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Table 32. Estimated Kalman Filter Parameters (AR(2) Case 6)
_ _ Data Size A Qd Af ki k 2  _ _ _ _

1280 2.2366 1.4978 0.5891 0.7367 -0.0981 -0.4701 0.2983
Mean 2560 2.2378 1.4881 0.5976 0.7330 -0.0998 -0.4712 0.3006
I5120 2.2404 1.4876 0.5998 0.7323 -0.1003 -0.4713 0.3020

1280 0.0904 0.1428 0.1123 0.0484 0.0163 0.0435 0.0491
:.St. Dev. 2560 10.0631 0.1015 0.0791 0.0343 0.0115 0.0306 0.0347

______ 5120 0.0452 0.0680 0.0533 0.0229 0.0078 0.0220 0.0259
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M/M/1 Results. The next results are from the four M/M/1 cases shown in Table 4. The

results from each of the cases are discussed in the following sections.

M1/M/1 Case 1 (Average Waiting Time in Queue, p = 0.5). The results from this

model are presented in Tables 33-38. The actual coverage rates, found in Table 33, are all close

to nominal but there are several lower than those seen in the AR(2) cases. As mentioned earlier,

this is due to the M/M/1 queue's inherent statistical complexity. As in the AR(2) Case I data,

the coverage rates tend to increase as sample size increases and decrease as batch size decreases.

NOBM and OBM provide the highest coverage rates, especially at the large sample size. STDS

does not appear to perform well for this case, especially at the smaller sample sizes. Once again,

however, it is important to note that, within the estimation accuracy many of the methods appear

to perform equally well in regards to coverage rates.

The average half widths in Table 34 also show trends similar to those seen in AR(2) Case 1.

The half widths get smaller as the sample size increases but larger as the batch size increases.

Notice the tight confidence intervals provided by the two Kalman filter techniques. These tight

intervals are responsible for the low coverage rates discussed above. The half widths' standard

deviations in Table 35 exhibit similar patterns to those in AR(2) Case 1.

The estimated Kalman filter parameters in Table 36 provide considerable insight into the

performance of the confidence intervals generated by the SKF technique. The Kalman filter is

essentially fitting the M/M/1 output to an AR(1) process. It estimates the value of 01 to be about

0.75 and the value of 02 to be about 0.025 (essentially zero). As sample size increases, the value

of q1 increases. The estimation has placed all of the noise in the Qd term. Thus, with very little

measurement noise, the Kalman filter almost entirely disregards the dynamics model by estimating

the gain value, K 1 , to be almost 1.0. The estimated ratio of Qd/R for this and all of the following

M/M!l are above 700, again indicating that the estimation routine has not assigned a significant

variance to the lack of fit term R.

The average mean estimation errors of the two mean estimators, see Table 37, offer some

insight to the rather poor performance of the MMAE technique. For all sample sizes, we are

underestimating the mean value with the MMAE estimator. This will cause a degradation in

coverage, even if the variance is correctly estimated, and thus, the half widths are of the correct
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Table 33. Actual Coverage Rates (M/M/1 Case 1)

Data i NOBM OBM STDS 1 AUTO SKF I MMAE
Size 5 10 20 5 10 20 5 10 20]
1280 0.872 0.862 0.838 0.860 0.845 0.841 0.843 0.825 0.806 0.843 1 0.840 0.819
2560 1 0.888 0.870 0.877 0.893 0.872 0.871 1 0.858 0.857 0.846 0.874 0.870 0.844
5120 0.892 0.887 0.887 1 0.891 0.884 0.890 [ 0.881 0.871 0.863 0.877 0.879 0.843

Note: With nominal rate of 0.9, estimation accuracy is ; ±0.016 for 1000 runs.

Table 34. Average Half Width (M/M/1 Case 1)

Data NOBM OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 _ _ _

1280 0.137 0.120 0.114 0.127 0.117 0.112 0.126 0.116 0.103 0.112 0.111 0.106
2560 0.102 0.090 0.085 0.095 0.087 0.084 0.094 0.085 0.081 0.081 0.081 1 0.078
5120 0.074 0.065 0.062 0.069 0.063 0.061 0.070 0.063 0.060 0.058 0.058 . 0.056

size. This underestimation of the mean is probably caused by an incorrect choice for either the

number of filters or spacing of filters and will be addressed inthe MMAE section of this chapter.

Table 38 shows no significant difference between the standard deviation of the mean estimation

errors. Both of the standard deviations are very small.

M/Mi1 Case 2 (Average Waiting Time in Queue, p = 0.8). The results from this

model are presented in Tables 39-44. The increased traffic intensity of 0.8 makes this case extremely

complex from a statistical standpoint. The actual coverage rates, see Table 39, reflect this difficulty.

Table 35. Standard Deviation of Half Widths (M/M/1 Case 1)

Data NOBM - OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 i.
1280 0.065 0.047 0.041 0.056 0.046 0.039 0.063 0.049 0.037 0.040 0.038 0.036
2560 0.044 0.033 0.027 0.036 0.029 0.026 0.045 0.033 0.027 0.024 0.021 0.025
5120 0.029 0.020 0.016 0.023 0.018 0.015 0.029 0.023 0.018 0.013 0.011 0.013
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Table 36. Estimated Kalman Filter Parameters (M/M/ Case 1)
Data Size 1A Qd 1 A'1  K 2 02

1280 0.2897 0.2888 0.0006 1 0.9979 0.0015 0.7435 0.0166
Mean 2560 0.2927 0.2921 0.0004 0.9985 0.0011 0.7479 0.0233

5120 0 2952 0.2946 0.0004 0.9988 0.0009 0.7515 0.0274
1280 0.0359 0.0360 0.0008 0.0029 0.0019 0.0559 0.0378

St. Dev. 2560 0.0255 0.0255 0.0003 0.0012 0.0008 0.0390 0.0269

5120 0.0184 0.0184 0.0002 0.0007 0.0005 0.0282 0.0196

Table 37. Average Mean Estimation Errors (M/M/1 Case 1)
Data Size ' 1 MMAE Estimate of '

1280 -0.0055 -0.0109
2560 -0.0027 -0.0075 
5120 -0.0001 -0.0052 I

All of the coverages are below nominal coverage and significantly less than the coverages for M/MI 1

Case 1. A few of the coverage rates are close to nominal, but unlike the coverage rates with AR(2)

data, there are many below it. As in the previous M/M/1 case, the coverage rates tend to increase

as sample size increases and to decrease as batch size decreases. NOBM and OBM again provide

the best coverage rates, especially at the large sample size. STDS still does not appear to perform

well for MIM/1 data, especially at the smaller smple sizes.

The average half widths in Table 40 are much larger than those in M/M/1 Case 1, Table 33.

This increase in average half widths is due to the increased traffic intensity. The trends in this

table are the same as discussed for the previous case.

Again, the Kalman filter is modeling the M/M/1 output as an AR(1) process. It estimates

Table 38. Standard Deviation of Mean Estimation Errors (M/M/1 Case 1)
Data Size 9 MMAE Estimate of . I

1280 0.0728 0.0772

2560 0.0528 0.0542 I

5120 0.0381 0.0409 I
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Table 39. Actual Coverage Rates (A/M/1 Case 2)

Data NOBM OBM 1 STDS 1AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 1
1280 0.815 0.784 0.730 0.801 0.781 0.735 0.747 0.672 0.531 0.792 0.777 0.659
2560 0.857 0.843 0.814 0.852 0.826 0.802 0.820 0.765 0.674 I 0.830 0.824 0.716
5120 0.881 0.868 0.844 0.878 0.869 0.850 0.843 0.827 0.762 0.845 0.836 0.711

Note: With nominal rate of 0.9, estimation accuracy is :z ±0.016 for 1000 runs.

Table 40. Average Half Width (M/M/1 Case 2)

Data NOBM OBM STDS 1AUTO SKF MMAE

S iz e 5 1 0 2 0 5 1 0 2 0 5 1 0 2 0 1 . 3 9 1 . 0
1280 1.520 1.219 1.009 1.378 1.177 0.992 1.187 0.888 0.595 1.455 1.239 1.001
2560 1.201 1.018 0.884 1.096 0.971 0.866 1.056 0.823 0.621 0.990 0.930 0.851
5120 0.898 0.776 0.713 0.830 0.755 0.700 0.806 0.710 0.576 0.700 0.671 0.626

the value of 01 to be about 0.95 and the value of 02 to b( about 0.01 (essentially zero). As sample

size increases, the value of 0(1) increases. The estimation routines have again placed all of the noise

in the Qd teim and thus the Kalman filter almost entirely disregards the dynamics model. The

estimated value of Qd increased with the increase in traffic intensity. As expected, this indicates

greater variability in the output at the higher traffic intensity.

The average mean estimation errors of the MMAE estimator, as seen in Table 43, again show

that, for all sample sizes the method is underestimating the mean value. In fact, the underestimation

is even more pronounced for this traffic intensity. This will again cause a degradation in coverage.

Table 41. Standard Deviation of Half Widths (M/M/1 Case 2)

Data NOBM r OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20

1280 1.165 0.755 0.508 0.959 0.701 0.492 0.730 0.374 0.167 2.246 1.100 0.534
2560 0.807 0.592 0.429 0.648 0.526 0.405 0.677 0.398 0.193 0.804 0.622 I 0.536

5120 0.525 0.391 0.314 0.435 0.357 0.297 0.471 0.342 0.206 0.365 0.318 0.320
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Table 42. Estimated Kalman Filter Parameters (M/M/1 Case 2)

Data Size A Qd R K K 2  01 02
1280 1.1188 1.1167 0.0011 0.9990 0.0009 0.9433 0.0046

Mean 2560 1.1232 1.1211 0.0011 0.9990 0.0009 0.9464 0.0086

5120 1.1198 1.1177 0.0011 0.9990 0.0009 0.9482 0.0109

1280 0.1213 0.1211 0.0002 0.0002 0.0001 0.0397 0.0319
St. Dev. 2560 0.0832 0.0830 0.0001 0.0001 0.0001 0.0292 0.0226

5120 0.0584 0.0583 0.0001 0.0000 0.0000 0.0212 0.0161

Table 43. Average Mean Estimation Errors (M/M/1 Case 2)
Data Size 1 MMAE Estimate of L,

1 1280 0.0007 -0.2885

2560 0.0266 -0.2416
5120 0.0129 -0.2206

Tab.e 44 reports the standard deviations of the mean estimation errors. The data indicates

that the ',AMAE estimator has a higher variance than the traditional estimator.

Al/Ml/ Case 3 (Average Number in Queue, p = 0.5). The results from this model are

presenteL] in Tables 45-50. The results in these tables indicate that, with a traffic intensity of 0.5,

all of the aethods perform the same for this "time-persistent statistic" as they did for the "statistic

based or observations" (waiting time) in Case 1.

Table 44. Standard Deviation of Mean Estimation Errors (M/M/1 Case 2)
Data Size y MMAE Estimate of Fu

1280 0.9468 1.3941
2560 0.6827 0.9614 1

5120 0.4939 0.7796
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Table 45. Actual Coverage Rates (M/M/1 Case 3)

Data NOBM OBM'I STDS AUTO i SKF MMAE
Size 5 10 20 5 10 20 5 10 20
1280 0.853 0.843 0.839 0.851 0.840 0.835 0.837 0.833 0.816 0.840 0.843 0.817
2560 0.882 0.877 0.877 0.883 0.8 73 0.862 0.849 0.859 0.849 0.864 0.861 0.837
5120 0.913 0.889 0.883 I0.902 0.897 0.885 0.895 0.871 0.870 0.875 0.875 0.848

Note: With nominal rate of 0.9, estimation accuracy is : ±0.016 for 1000 runs.

Table 46. Average Half Width (M/M!1 Case 3)

Data NOBM F OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 I

1280 0.152 0.134 0.126 0.140 0.130 0.124 0.141 0.126 0.118 0.125 0.124 0.118
2560 0.113 0.099 0.093 0.104 0.095 0.092 0.103 0.095 0.089 0.090 0.090 0.086
5120 0.081 0.071 0.068 0.074 0.069 0.067 0.076 0.069 0.066 0.064 0.064 0.061

Table 47. Standard Deviation of Half Widths (MIM/1 Case 3)

Data NOBM OBM STDS ] AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 _

1280 0.072 0.054 0.045 0.060 0.049 0,044 0.070 0.053 0.0451 0.046 0.041 0.039
2560 0.048 0.033 0.027 0.038 0.029 0.025 0.045 0.035 0.028 0.023 0.021 0.022
5120 0.032 0.022 0.017 0.024 0.018 0.016 0.030 0.623 0.020 1 0.013 0.011 0.012

Table 48. Estimated Kalman Filter Parameters (M/M/1 Case 3)
Data Size IA Qd R? K1  K 2  _1 ____

1280 0.6135 0.6098 0.0026 0.9955 0.0028 0.6668 0.0210
Mean 2560 0.6201 0,6176 0.0018 0.9971 0.0019 0.6746 0.0286

5120 0.6211 0.6190 0.0014 0.9977 0.0015 0.6792 0.0314
1280 0.0839 0.0847 0.0040 0.0072 0.0044 0.0694 0.0421

St. Dev. 2560 0.0589 0.0591 0.0022 0.0037 0.0023 0.0484 0.0314
5120 0.0416 0.0417 0.0014 0.0024 0.0016 0.0346 0.0237
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Table 49. Average Mean Estimation Errors (M/M/1 Case 3)
Data Size y MMAE Estimate of A.

1280 -0.0040 -0.0084
2560 -0.0003 -0.0057
5120 -0.0007 -0.0053

Table 50. Standard Deviation of Mean Estimation Errors (MIM/1 Case 3)
Data Size MMAE Estimate of a,

1280 0.0823 0.0844
2560 0.0576 0.0620
5120 0.0409 0.0433
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M/M/1 Case 4 (Average Number in Queue, p = 0.8). The results from this model are

presented in Tables 51- 56. The data in Table 51 indicate that, for a traffic intensity of 0.8, the

actual coverage rates for this time-persistent statistic are lower than they are for the statistic based

on observations in Case 2. However, the trends in coverage rate among sample size and batch size

remain the same. The half widths for average number in queue shown in Table 52 are larger than

the half widths for average waiting time in the queue.

The information reported in Table 54 again shows that the SKF method is modeling the

M/M/I output as an AR(1) process. It estimates the value of 01 to be about 0.94 and the value

of 42 to be about 0.01 (essentially zero). As sample size increases, the value of 01 increases.

The Kalman filter has again placed all of the noise in the dynamics noise Wd and estimates no

measurement noise v. By estimating the gain value, K 1 , to be almost 1.0, the Kalman filter

essentially disregards the dynamics model

The average mean estimation errors of the MMAE estimator, found in Table 55, again show

that, for all sample sizes the method is underestimating the mean value. In fact, the underestimation

is even more pronounced for this statistic than for average waiting time.
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Table 51. Actual Coverage Rates (M/M/1 Case 4)

Data NOBM OBM STDS AUTO SKF MMAE
Size 5 10 20 5 10 20 5 10 20 ___

1280 0.798 0.769 0.709 0.777 0.747 0.698 0.744 0.644 0.499 0.769 0.750 0.622

2560 0.831 0.801 0.767 0.823 0.793 0.760 0.781 0.728 0.634 0.795 0.788 0.675
5120 0.853 0.823 0.812 0.842 0.829 0.809 0.805 0.790 0.733 0.808 0.802 0.694

Note: With nominal rate of 0.9, estimation accuracy is : ±0.016 for 1000 runs.

Table 52. Average Half Width (MM/A/1 Case 4)

Data NOBM OBM STDS AUTO SKF MMAE

Size 5 10 20 5 10 20 5 10 20 _

1280 1.589 1.300 1.086 1.453 1.246 1.060 1.307 0.963 0.651 1.565 1.317 1.044

2560 1.255 1.053 0.926 1.161 1.027 0.915 1.081 0.879 0.677 1.046 0.980 0.871 p

5120 0.926 0.802 0.737 0.854 0.778 0.728 0.844 0.732 0.614 0.729 ]0.699 0.664

Table 53. Standard Deviation of Half Widths (M/M/1 Case 4)

Data NOBM OBM STDS AUTO SKF I M7iiAE
Size 5 10 201 5 10 20 5 10 20 1.4

1280 1 1.173 0.817 0.562 1.061 0.779 0.551 I 0.866 0.435 0.195 2.295 1.044 0.552
2560 0.832 0.610 0.456 0.773 0 604 0.453 0.713 0.438 0.225 0.794 0.612 0.492
5120 0.526 0.393 0.321 0.456 0.382 0.318 0.497 0.363 0.229 0.367 0.307 0.339

Table 54. Estimated Kalman Filter Parameters (M/M/1 Case 4)

Data Size A Qd i j k, k 2  01 2

1280 1.4474 1.4447 0.0014 0.9990 0.0009 0.9363 0.0075
Mean 2560 1.4458 1.4432 0.0014 0.9990 0.0009 0.9395 0.0117

5120 1.4454 1.4428 0.0014 0.9990 0.0009 0.9421 0.0132

1280 0.1425 0.1422 0.0004 0,0002 0.0002 0.0422 0.0336
St. Dev. 2560 !0.1002 0.0999 0.0002 0.0001 0.0001 0.0319 0.0245

5120 0.0726 0.0725 0.0001 0.0000 0.0000 0.0220 0.0174
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Table 55. Average Mean Estimation Errors (M/M/1 Case 4)
Data Size IMMAE Estimate of p,,

1280 0.0017 -0.3962
2560 0.0022 -0.3415
5120 -0.0070 -0.2174

Table 56. Standard Deviation of Mean Estimation Errors M/M/1 Case 4)
Data Size y MMAE Estimate of .

1280 1.0240 1.3701
2560 0.7611 1.0355
5120 0.5317 0.8013
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MMAE Results

Examination of the baseline case for the MMAE estimator indicated that the technique was

producing a biased estimate of the mean value and might not be providing an accurate estimate of

its variance. This section discusses various attempts to explore and correct these problems.

Evenly-Spaced Filters. The first attempt to improve the MMAE method involved changing

the number and spacing of filters. In addition to changes in the number and spacing of the filters,

the a priori probabilities for the filters were changed to a uniform distribution. This change in

the a priori probabilities was made for ease in coding the routines. The results, discussed below,

indicate this change either caused no change in actual coverage rates or slightly improved them.

As in the baseline case, the spread value corresponds to the amount added to and subtracted

from the center filter to determine the filters at each end of the bank. The remaining filters were

placed at even increments between these end filters. In order to save computation time, the number

of runs was cut to 250. With 250 runs, the estimation accuracy has decreased, and this should be

taken into consideration wLen comparing results in this section Eo those of the baseline case.

Although the MMAE method was providing nominal coverage for the AR(2) cases, the effect

of these changes on MMAEs performance was first tested on an AR(2) case. The AR(2) process

from the baseline Case 1 was used. The first results, presented in Tables 57-61, are for 11, 21,

and 31, filters all with spread values of ± 2, 5, and 8 times the variance of the mean estimate,

Equation (32).

The results in Table 57 indicate that either 11 or 31 filters with a spread value of 5 or 8 times

6, provide the best coverage rates. This unique pattern of either a small, or large number of filters

providing good results was discussed in Chapter IV. With small sample sizes, 11 filters provides the

highest coverage. Nominal coverage was not obtained in several cases when 21 filters were used.

Nominal coverage was not obtained in some of the cases using I1 or 31 filters at the smallest spread

value.

The half widths reported in Table 59 indicate that, when 21 filters are used, the MMAE

estimate of the mean value must not be a good e.timator. The half widths are almost as large with

21 filters as they are for 11 or 31 filters yet coverage is drastically reduced. The data in Table 59
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Table 57. MMAE Actual Coverage Rates (AR(2) Case 1)
Data Spread (26,) Spread (5&9) 1 Spread (8)

11 21 31 11 21 31 11 21 31

1280 0.9360 0.7680 0.7720 0.9480 0.8800 0.9400 0.9480 0.8000 0.9320
2560 0.8640 0.8160 0.8000 0.9120 0.8600 0.9040 0.9120 0.8320 0.9000
5120 0.8960 0.7680 0.7840 0.9440 0.9120 0.9360 0.9440 0.8680 0.9320

Table 58. MMAE Average Half Width (AR(2) Case 1)
Data Spread (2&g) Spread (5&9) Spread (8& )

11 21 31 11 21 31 11 21 31
1280 0.2356 0.1954 0.2022 0.2578 0.2308 0.2518 0.2541 0.2110 0.2443
2560 0.1674 0.1373 0.1412 0.1811 0.1655 0.1723 0.1790 0.1567 0.1701
5120 0.1210 0.0960 0.0990 0.1280 0.1195 0.1210 0.1264 0.1151 0.1197

show that the MMAE estimate of the mean value does have larger estimation errors when 21 filters

are used. Tables 59 and 61 indicate that with 21 filters, both the stardard deviation of the half

widths and the standard deviations of the mean estimation errors increase.

After looking at these results, it is obvious that the number of filters and spacing of filters

has a significant impact on coverage rates. Since the small number of filters (11) and large number

of filters (31) both provided similar coverage, it was decided to explore the use of fewer filters

further. Without a truth model, a possible hueristic approach is to use as few filters with as large a

total spread as possible without degrading performance. The smaller number of filters will provide

computational efficiency and eliminate tne problem of unstable probabilities among adjacent filters,

For tire rest of the cases, it was decided to base the overall spread of the filters on a multiple

Table 59. MMAE Standard Deviation of Half Widths (AR(2) Case 1)
Data Spread (2c,) Spread (560) Spread (8&9)

11 21 31 11 21 31 11 21 31
1280 0.0278 0.0382 0.0423 0.0319 0.0385 0.0454 0.0272 0.0434 0.0282
2560 0.0343 0.0267 0.0236 0.0182 0.0182 0.0177 0.0122 0.0230 0.0119
5120 0.0197 0.0175 0.0173 0.0110 0.0139 0.0123 0.0067 0.0133 0.0065
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Table 60. MMAE Average Mean Estimation Errors (AR(2) Case 1)

Data Spread (2 ,) Spread (5&) Spread (8a.)
11 21 31 11 21 31 1 1 21 31

1280 -0.0016 0.0352 0.0477 0.0010 0.0217 0.0055 -0.0028 0.0417 0.0005
2560 -0.0161 0.0045 0.0132 0,0026 0.0102 0.0059 0.0023 0.0187 0.0046

5120 -0 0105 0.0025 0.0108 0.0022 0.0049 0.0028 0.0019 0.0092 0.0025

Table 61. M A F Standard Deviation of Mean Estimation Errors (AR(2) Case 1)

Data Spread (2&o) Spread (56r) Spread (86)

11 21 31 11 21 31 11 21 31

1280 0.1338 0.1469 0.1542 0.1371 0.1443 0.1345 0.1362 0.1537 0.1355
2560 0.1078 0.1029 0.1057 0.1046 0.1052 0.0994 0.1008 0.1099 0.0992

5120 0.0774 0.0771 0.0756 0.0685 0.0701 0.0679 0.0686 0.0731 0.0681

of &2, Equation (24), instead of . decreases as sample size increases, therefore, using it may

have put the larger sample sizes at a disadvantage. Switching to a near constant spread between

sample sizes also made comparisons easier. The variance of y was used instead of the standard

deviation of y. This will cause the spread to increase further fur processes with a great deal f

variability (e.g. the A . Al, I queue), than for inherently stable processes (i.e. AR(2) processes).

Since the M/M '1 queue is widely used and much more statistically complex that the AR(2)

process, M/,'I1 data was used for the additional trials. Specifically, M!M/1 Case I (average

waiting time in queue, p = 0.8) was used. The first Ml M 1 MMAE trial used 5, 9, and 13 filters

with spread values of 0.1, 0.3, and 0 5 times 2

'Fable 62 shows the actual coverage rates for the first .,; 1/1 MMAE trial. The table cdearlv

Table 62. MMAZ \Actuai Coverage Rates iMi/A,1 Case 2)
Data Spread (0Sprea (0.3, Spread (0.5Y2)

Size 5 9 13 5 9 13 5 9 13

1280 0.520 0.6120 0.6001 0.5640 0.5360 0.6880 0.5560 0.5400 0.7360
2.560 0.5920 0.6720 0.6360 0.5840 0.5320 0.6920 0.5720 0.5280 0.7520
5120 0.6480 0.6640 0.7280 0.3720 0.5320 0 7960 0.3760 0.5360 0.8240
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Table 63. MMAE Average Half Width (M/A/1 Case 2)

Data Spread (0.16") Spread (0.3&') 1 Spread (0.5&')

Size 5 9 13 5 9 13 5 P 13
1280 0.9146 1.0350 1.1175 1.0987 1.0638 1.4741 1.1002 1.0391 1.5924

2560 0.8875 0.8827 0.9366 0.8374 0.7461 1.0647 0.8667 0.7192 1.1279
5120 0.7071 0.6264 0.6770 0.3937 0.5498 0.8247 0.3944 0.5418 0.8103

Table 64. MMAE Standard Deviation of Half Widths (M/Mf/1 Case 2)
Data Spread (0.1&2) Spread (0.3&') Spread (0.5&2)

Size: 5 9 13 5 9 13 5 9 13

1280 0.6912 0.8044 0.9232 0.6939 0.8387 1.1124 1 0.7944 0.8635 1.1546
2560 0.6026 0.5288 0.6824 0.8020 0.5410 0.6189 0.8435 0.5554 0.6470

5120 0.4715 0.4152 0.3136 0.6259 0.4383 0.4402 0.6247 0.4502 0.4630

indicates that all of the actual coverage rates are significantly below the nominal rate. The table

indicates that the actual t overage rates for each sample size are highest when the number of filters

was equal to 13. When using 13 filters, coverage improved as the spread increased. As was expected,

the switch t', 62 fows for betttr coverage as sample size increases. The only exception was when

the fiters were spaced too far apart (e.g. spacing of 0.3 &2 with only 5 filters). This indicates

that in these ituations the probabilities are concentrating on one or two filters and the variance is

underestimated.

Table 63 indicates that, as the coverage went up, so did the half widths. Table 64 indicates

that as sample size increased, the standard deviation of the half widths decreased. A very positive

result indicated in this chart is seen by examining the standard deviation of the half widths for

sample size of 5120, 13 filters, with a spread of 0.5 &2. The table indicates that . in addition to having

the Yighest actual coverage rate (in Table 62), it also has the smallest standard deviation. This

result seems corroborate the discussions from Chapter IV, that there is an optimal approach for

spacing ttie filters that will offer actual coverage near nominal due to accurate and stable estimates

, the variance.

Table 65 indicates that the problem of poor estimates of the mean value as seen in the baseline

MMAE approach above can be eliminated with an appropriate Combination of number of filters
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Table 65. MMAE Average Mean Estimation Errors (M/M/1 Case 2)

Data Spread ( Spread (0.3& ) I Spread (0.5& )
Size 5 9 13 5 9 13 5 9 13

1280 -0.6217 -0.1601 -0.0880 -0.4339 0.3208 0.2916 -0.7093 0.2682 0.1755
2560 -0.5140 -0.0612 0.0098 -0.2838 0.2471 0.1653 -0.3807 0.2222 0.0501
5120 -0.4333 0.0269 0.1083 -0.0655 0.2943 0.0956 -0.0780 0.2795 0.0097

Table 66. MMAE Standard Deviation of Mean Estimation Eriors (M/M1 Case 2)
Data Spread (0.1& 2 ) Spread (0.3 2) Spread (0.5 Y)
Size 5 9 13 5 9 13 5 9 13

1280 1.0834 1.0352 1.1537 1.6010 1.4411 1.3428 1.5160 1.3676 1.2529
2560 0.9289 0.8345 0.8988 1.1833 09934 1.1409 1.1984 0.9649 1.0658
5120 0.8260 0.5782 0.6909 0.6297 0.6710 0.6821 0.6321 0.6651 0.5620

and total spread. Not surprisingly, the best estimate of the mean corresponds to the case with

the highest actual coverage. This table also points out that, if the filters are too closely spaced,

especially for small sample sizes, the mean is consistently underestimated by MMAE. Table 66

indicates that, as the MMAE mean estimation errors improved, the standard deviation of the

errors was lowered.

The first M/M,' 1 MMAE trial indicated that there was a significant pot,'ntial for achieving

good coverage rates using 'he MMAE approach with evenly-spaced filters. From the results of the

first trial an indication of what spacing and number of filters worked best was obtained, and several

more trials were run. The results of a representative case are presented and discussed below.

This trial used 9, 11, and 13 filters with spreads of 0.8, 1.0, and 1.2 times &2. Table 67

ndicatcz t'. dctaai coverage rates have greatly improved, when compared to the baseline MMAE

case, for all sample sizes.

Tables 68 and 69 present the average half widths and their associated standard devation for

this M/M/1 NMMAE trial. These half widths and standard deviations indicate that the MMAE

approach is constructing confidence intervals with half widths and standard devations similar to

those constructed by the widely applied techniques used in the baseline case. These results are

extremely encouraging, considering the fact that these MMAE results are simply from a "guessed"
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Table 67. MMAE Actual Coverage Rates (IIM/I Case 2)
Data Spread (1.26,) Spread (1.4&2) Spread (1.6 &)

9 11 13 9 11 13 9 11 13
1280 0.6640 0.7120 0.7160 0.6760 0.7480 0.7560 - '60 0.7480 0.7560
2560 0.7640 0.7560 0.7560 0.7400 0.7720 0.7800 0.7400 0.7720 0.7800
5120 0.7960 0.8200 0.8560 0.8120 0.8400 0.8640 0.8120 0.8400 0.8640

Table 68. MMAE Average Half Width (MIIM/I1 Case 2)
Data Spread (l.202) Spread (1.4&2) Spread (1.6&')

p 9 11 13 9 11 13 9 11 13
1280 1.1725 1.4143 1.3773 1.2782 1.4998 1.4064 1.2783 1.4997 1.4062
2560 1.0562 1.1093 1.1180 0.9816 1.0917 1.0409 0.9816 1.0915 1.0407
5120 0.7168 0.7959 0.7888 0.7186 0 7309 0.7347 0.7190 0.7310 0.7347

combination of filters and spacing and may not be the best possible MMAE results. As expected

from the increased coverage rates, Tables 70 and 71 indicate that the MMAE mean estimation error

is better than in the baseline case as is its associated standard deviation.

Table 69. MMAE Standard Deviation of Half Widths (M/M/1 Case 2)
Data Spread (1.2&') Spread (1.4&') Spread (1.6&)

9 11 13 9 11 13 9 11 13
1280 0.6629 1.0112 0.9673 1 0.7248 1.0386 0.9439 0.7244 1.0383 0.9434
2560 0.6330 0.7608 0.8289 0.5430 0.7120 0.6645 0.5427 0.7119 0.6638
5120 0.4006 0.5978 0.4334 0.4311 0.3166 0.3076 0.4331 0.3170 0.3075
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Table 70. MMAE Average Mean Estimation Errors (M/M/1 Case 2)
Data Spread (1.2&') Spread (1.4&') Spread (1.6 )

9 11 13 1 9 1i 137 9 11 13

1280 -0.5462 0.1647 0.1329 -0.4432 -0.0311 -0.2189 -0.4425 -0.0307 -0.2184
2560 1-0.2232 0.2040 0.1871 -0.2994 -0.0634 -0.1586 -0.2994 -0.0638 -0.1588
5120 1 -0.0729 0.1226 0.1127 -0.0650 0.0066 -0.0025 -0.0648 0.0066 -0.0026

Table 71. MMAE Standard Deviation of Mean Estimation Errors (M!M!1 Case 2)
Data Spread (1.26,2) Spread (1.46,2) Spread (1.6 &)

9 11 13 9 11 13 9 11 13

1280 1.4064 1.4781 1.3760 1.4698 1.3623 1.0349 1.4695 1.3617 1.0342
2560 0.8606 1.1794 1.1047 '.0206 1.1036 0.8986 1.0207 1.1040 0.8994
5120 0.6236 0.7370 0.7146 0.5202 0.5350 0.4911 0.5188 0.5348 0.4912
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Normally-Spaced Filters. As discussed in Chapter III, the usual approach to constructing

confidence intervals (and the one used for all the MMAE intervals so far) involves the use of a

multiplier. The multiplier is based on the assumed probability distribution of the parameter. That

multiplier is often a t-critical value. All of the MMAE confidence intervals presented to this point

were constructed with the use of a t-critical multiplier. The use of a t-critical value assumes that the

underlying distribution of the sample is normally distributed. In the MMAE technique, the sample

is the set of filter means and their associated final probabilities. This sample may or may not follow

a normal distribution. Therefore, it was decided to analyze the final MMAE filter probabilities.

The figures that follow show the final MMAE filter probabilities for a sample size of 5120

(since this sample size usually provided the best coverage) for the three MMAE trials discussed in

the previous section. There are three curves displayed on each graph; each curve corresponds to

one of the three choices for number of filters used. For each case there are three figures, one for

each spread value. By looking at these figures, and comparing the ones which provided good versus

"not so good" coverage, some unique insights into the MMAE approach can be seen. However,

each of these curves represents the final probabilities of one single run (one representation of the

stochastic process) and not the aggregate final probabilities over all runs. Thus, these curves may

not be indicative of the average final probabilities, but hopefully insights could be made as to a

good spacing of the filters.

Figures 2-4 are from the AR(2) Case 1, MMAE results obtained in the previous Fection.

Figure 2 shows the final probabilities for 11, 21, and 31 filters placed evenly apart with a total

spread of :2a from the MMAE estimate of the mean. Table 57 indicates that the use of 11 filters

provided the highest coverage for this spread. The figure shows that the curve representing 1I filters

does appear to look normally shaped. The other two curves appear to be skewed. It is interesting

to note that no single filter received a final probability greater that approximately 0.16,

Figure 3 shows the final probabilities for 11, 21, and 31 filters placed so as to cover a range

of :_50 from the average value of the simulation observations. Table 57 indicates that, for this

spread, all three number of filter selections provided nominal coverage. The use ot both 11 and 31

filters provided extremely high coverage The figure illustrates that, by setting the low and high

filters at approximately 49.9 and 50.2 respectively, as was done when the spread was set to ±26,
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Figure 2. MMAE Final Filter Probabilities (AR(2) Case 1, spread
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Figure 3. MMAE Final Filter Probabilities (AR(2) Case 1,spread = _Sb)
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in Figure 2, the tails of the distribution are cut off and an artificial upper bound is imposed on the

variance estimate. This phenomenon was discussed in Chapter IV.

Figure 3 illustrates that, when the spread is set too large, many of the filters receive a final
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Figure 4. MMAE Final Filter Probabilities (AR(2) Case 1, spread = -86')
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probability of nearly zero and offer no contribution to the MMAE estimates of the mean and its

associated variance.

Figures 5-7 are from the first MMAE trial of M/M!l Case 2, results obtained in the previous

section. Figure 5 shows the final probabilities for 5, 9, and 13 filters spaced evenly apart with a

total spread of tO.16,2 from the MMAE estimate of the mean. Table 62 indicates that none of these

combinations of filters and spacing provided near nominal coverage. The use of 13 filters provided

the highest coverage for this spread. The figure shows that the filter probabilities do not appear

normally spaced, and the tails may be cut off.

Figure 6 shows the final probabilities for the same number of filters as above with a total

spread of O.35' from the MMAE estimate of the mean. This figure clearly illustrates, as does

Figure 7. that the use of 5 filters for these spread values is not enough filters. The final probability

for the center filter is almost one in both cases. This will certainly cause a loss of information in

estimating the variance.

Figures 8-10 are from the second AI/Al/ I MMAE trial case presented in the previous section.

Table 67 presents the actual coverage rates for this case, and it indicates that many of the actual

coverage rates were near nominal for this case. In all three cases, 13 filters provided the best
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Figure 5. MMAE Final Filter Probabilities (M/MII Case 2, Spread =0.1&2)
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Figure 6. MMAE Final Filter Probabilities (MIM/'1 Case 2, Spread = ±0.3&2)
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coverage. All three of these figures illustrate that the MMAE method appears to work best when

one filter has a large (above 0.6) final probability, and some of the surrounding (those nearest the

one with the large probability) filters end up with smaller, but significant probabilities.
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Figure 7. MMAE Final Filter Probabilities (Al/A 1 1 Case 2, Spread = ±0.5 & 2 )
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Figure 8. MMAE Final Filter Probabilities (M/M/1 Case 2, Spread 1.26,)
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The curves in Figures 8-10 appeared to be converging to a normal distribution as the spread

and number of filters increased. However, with evenly-spaced filters, many of the end filters were

ending up with a probability of nearly zero. In the above cases, the filters were evenly spaced in
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Figure 9. MMAE Final Filter Probabilities (M!M/I Case 2, Spread = ±1.46r)

0.9 - 9 filters

P 0.8 11 filters --
r 13 filters -a--
o 0.7
b 0.6
a

b 0.5

0.4 -
0.3

t
Y 0.2

0.1

0 1 2 3 4 5 6
Mean

Figure 10. MMAE Final Filter Probabilities (M/M/1 Case 2, Spread =1.66r)

0.9 - 9 filters -

P 0.8 11 filters G-
r 13 filters -0--
o 0.7
b/
a 0.6
b 0.5

0.4
0.3t

Y 0.2

0.1
0

0 1 2 3 4 5 6
Mean

an attempt to obtain final probabilities that appeared normally distributed. One other approach

is to space the filters at uneven amounts, using an inverse cumulative distribution function for the

t distribution to determine the appropriate spacing. The final probabilities should appear normal
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Figure 11. MMAE Final Filter Probabilities (M/Mi1 Case 2, spread = normal)
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and a t-critical value would be appropriate.

Figure 11 shows the final probabilities for 21 filters normally spaced for a sample size of

5120, using data from M/M/1 Case 2. The end filters were placed at ±3&9 from the average

of the simulation observations. The curve appears to follow a normal distribution, although the

difference between filter parameters is very small. It is interesting to note that the filters are not

evenly divided on either side of the curve's peak value. This might indicate that the MMAE filter

probabihties are still in the process of stabilizing and the current MMAE estimate of the mean will

be low; the theoretical mean value for this case is 3.2. If the MMAE filter probabilities are still

stabilizing, it either means that we still have transient data, or that the MMAE technique simply

requires a large sample size.

After reviewing Figure ii, it was decided to run 1000 replications to analyze the results.

Table 72 indicates that, with these selections for total spread and number of filters, the normal

spacing technique does not work well. The coverage rates reported in the table are all wel below

nominal. The half widths appear to be underestimated, as does the mean value of the process.

However, these results are only for one combination of total spread and number of filters, and better

results might be obained with other combinations.
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Table 72. Results From Normal Spaciag of Filters
Data Coverage Average Standard Mean Standard
Size Rates Half Width Deviation of Estimation Deviation

Half Widths Error of Error
1280 0.5760 0.8004 0.4834 -0.2624 2.2292
2560 0.5880 0.6652 0.5179 -0.2709 0.9143
5120 0.5750 0.4692 0.3015 -0.2475 0.6513
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Table 73. MMAE PI Actual Coverage Rates (MI/M/ 1 Case 2)

Data Spread (1.2& ) Spread (1.4&2) Spread '1.6 )

12 13 15 12 13 15 12 13 15
1280 0.7400 0.7760 0.7560 0.7640 0.7880 0.7920 0.7720 0.7880 0.7920
256C 0.8520 0.8680 0.8360 0.8360 0.8720 0.8560 0.8360 0.8760 0.8600
5120 0.9360 0.9520 0.9240 0.9440 0.9520 0.9280 0.9440 0.9520 0.9280

Probabzlistic Approach. One other approach for using an MMAE model was discussed in

Chapter IV. This approach involved running a simulation output process through a bank of Kalman

filters and then using the final MMAE probabilities as a discrete approximation of the underlying

distribution. By backing off five percent froni each end of the bank one will obtain a "probabilistic

interval" containing 90 percent of the final MMAE probabilities. This method will probably require

more filters than the original MMAE method to reduce interpolation between the discrete filters

which will serve as end points.

The intervals constructed using this technique will not be symmetric. Choobineh and Ballard

reported good results for a technique that also produced asymmetric confidence intervals 6.

An initial trial of this method was run using 12, 13, and 15 filters spaced evenly apart with

a total spread of t: 1.2, 1.4, and 1.6 times 6,
2 . Table 73 shows the actual coverage rates for this

MMAE PI method. The coverage rates are very high, especially for large sample size, for 11 M/1

data with a traffic intensity of 0.8.

Table 74 shows the average half widths for the first MMAE PI trial. As expected, the high

coverage rates are direct results of very large interval widths. However, Tables 73 and 7.1 indicate

that this method has the potential to construct meaningful confidence intervals. After running

several more cases some excellent results were obtained. One representative case is discussed in the

following paragraphs.

Tables 75-80 present the results of the MMAE PI technique using 18, 21, and 24 filters evenlv

spaced at i.2. 1.4, and 1.6 times a. ltable 75 indicates that for a sample size of 5120 nominal

coverage was obtained in almost every case.
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Table 74. MMAE PI Average Half Width (M/M/1 Case 2)
Data Spread (1.2&2) Spread (1.4& 2) Spread (1.6&)

12 13 15 12 13 15 12 13 15
1280 1.3516 1.4940 1.4583 1.4668 1.5024 1.4781 1.4655 1.5056 1.4790 1

2560 1.2435 1.2399 1.2415 1.1961 1.2046 1.1758 1.1916 1.2092 1.1761
5120 1.0044 1.0282 0.9740 1.0087 1.0167 0.9453 1.0087 1.0167 0.9454

Table 75. MMAE PI Actual Coverage Rates (M/M/1 Case 2)
Data Spread (1.2&2) Spread (1.4&2 ) Spread (1.6& 2 )

18 21 24 18 21 24 18 21 24
1280 0.7040 0.7240 0.7280 0.7200 0.7640 0.7640 0.7240 0.7640 0.7640
2560 0.8360 0.8160 0.8040 0.8080 0.8400 0.8280 0.8080 0.8400 0.8280
5120 0.9000 0.8880 0.8920 0.9000 0.9080 0.8960 0.9000 0.9080 0.8960

The average half widths are found in Table 76. This table indicates that, for large sample

size, this method results in intervals with tight half widths.

Table 77 lists the standard deviation of the half widths for this technique. Again, for large

sampie sizes, the results are excellent. The combination of results in Tables 75-77 clearly indicate

that there is great potential in this method. For example, in the baseline Monte Carlo analysis,

NOBM with 5 batches and a sample size of 5120 resulted in the highest coverage. This NOBM

coverage was 0.881, with an average half width of 0.898, and a standard deviation of 0.525. The

MMAE probabilistic approach offers better results for all three of these performance criteria. The

MMAE PI technique with 24 filters evenly spaced around the center filter with a total spread of

1.6&' offered a higher coverage of 0.896, with a smaller average half width of 0.827, and a lower

Table 76. MMAE PI Average Half Width (M/M/1 Case 2)
Data Spread (1.2Y) T Spread (1.46r) Spread (1.6&)

18 21 24 18 21 24 18 21 24
1280 1.2242 1.3775 1.3607 1.3246 1.4462 1.3779 1.3228 1.4467 1.3784
2560 1.1287 1.1479 1.1207 1.0676 1.1344 1.0745 1.0664 1.1343 1.0750
5120 0.8971 0.8997 0.8588 0.9034 0.8606 0.8287 0.9004 0.8567 0.8274
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Table 77. MMAE PI Standard Deviation of Half Widths (M/M/1 Case 2)
Data Spread (1.2& 2) Spread (1.4&2) Spread (1.6& 2)

18 21 24 18 21 24 18 21 24

1280 0.6222 0.8644 0.8606 0.7031 0.9097 0.8373 0.7043 0.9099 0.8370
2560 0.4950 0.6531 0.6921 0.4756 0.6591 0.5842 0.4755 0.6592 0.5857
5120 0.3013 0.4445 0.3372 0.3186 0.3154 0.2821 0.3098 0.3046 0.2801

Table 78. MMAE PI Average Upper Bound (M/M/1 Case 2)

Data Spread (1.2 ) Spread (1.4&y) Spread (1.6&,)

18 21 24 18 21 24 18 21 24
1280 3.9638 4.7427 4.7044 4.1747 4.5541 4.3947 4.1753 4.5549 4.3960

Mean 2560 4.1588 4.5251 4.5180 4.0382 4.2340 4.1362 4.0372 4.2343 4.1375
5120 4.0610 4.2098 4.1646 4.0574 4.0619 4.0280 4.0578 4.0623 4.0283

1280 1.7264 1.8771 1.8471 1.7955 1.9232 1.7299 1.7934 1.9214 1.7282
St. Dev. 2560 1.1240 1.3820 1.4014 1.2936 1.4338 1.2968 1.2950 1.4337 1.2982

5120 0.7258 0.9863 0.9349 0.7018 0.7521 0.7192 0.7021 0.7523 0.7192

standard deviation of 0.280.

Tables 78, 79, 80 present the MMAE PI average upper bound, lower bound, and mean value,

respectively, along with the associated standard deviations. These tables indicate the asymmetric

nature of the intervals produced with this technique.

Table 79. MMAE PI Average Lower Bound (M/M/1 Case 2)
Data Spread (1.26'Y) Spread (1.4 Y) Spread (1.6 )

18 21 24 18 21 24 18 21 24
1280 1.5153 1.9876 1.9831 1.5254 1.6617 1.6389 1.5297 1.6614 1.6392

Mean 2560 1.9013 2.2292 2.2766 1.9031 1.9653 1.9872 1.9044 1.9657 1.9874
5120 2.2668 2.4104 2.4471 2.2506 2.3407 2.3705 2.2570 2.3489 2.3734
1280 1.1018 1.3053 1.2614 0.9811 0.6948 0.6172 0.9688 0.6932 0.6166

St. Dev. 2560 0.6646 1.0495 1.0944 0.6950 0.6201 0.6274 0.6950 0.6202 0.6276

5120 0.4517 0.5397 0.5257 0.4351 0.3646 0.3460 0.4141 0.3335 0.3409
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Table 80. MMAE PI Average Estimate of the Mean Value (M/M/1 Case 2)
Data Spread (1.262) Spread (1.4& 2 ) Spread (1.6& 2)

18 21 24 18 21 24 18 21 24
1280 2.7128 3.3608 3.3441 2.8276 3.0"90 2.9890 2.8265 3.0797 2.9900

Mean 2560 3.0349 3.3891 3.3930 2.9420 3.0826 3.0456 2.9419 3.0829 3.0457
5120 3.1471 3.3312 3.3143 3.1603 3.2098 3.2016 3.1606 3.2102 3.2015
1280 1.3762 1.4404 1.3841 1.3465 1.1793 1.0408 1.3433 1.1751 1.0375

St. Dev. 2560 0.8076 1.1336 1.0938 0.9937 0.9572 0.8934 0.9937 0.9547 0.8915
5120 0.5905 0.7383 0.7099 0.4930 0.5106 0.4898 0.4913 0.5123 0.4895

Summary

This chapter has shown results that clearly indicate a great potential for confidence interval

construction techniques based on the use of the Kalman filters. In particular, the MMAE PI

technique, when used witb the large sample size, was shown to outperform all of the baseline

techniques. All of the Kalinan filter techniques produced confidence intervals with, when compared

to the currently used techniques, low standard deviations of half widths.

The estimation routine was able to identify the presence of measurement noise in the AR(2)

cases when it was present. However, it underestimated the magnitude of the measurement noise's

variance. For M/M/1 data the estimation routine placed all of the noise in the Qd term and thus

assigned a large value to K1 .

The following chapter summarizes the results presented in this chapter. In addition, the next

chapter offers several conclusions that can be drawn from these results and discusses various areas

for follow-on research.

84



VI. Conclusions and Recommendations

The first objective of this effort was to explore the use of the Kalman filter and the informa-

tion it provides in constructing confidence intervals for steady-state parameters of discrete-event

simulations. The second objective was to compare these methods to commonly used techniques

for confidence interval construction. Both of these objectives have been met and many areas for

future research have been identified. This chapter has three major areas of discussion. First, the

results from the previous chapter are summarized. Next, conclusions are drawn from these results.

Finally, recommendations are made for potential follow-on research topics.

Summary of the Results

Before discussing the final conclusions of this research effort, a summary of the results is

presented. The best cases from the MMAE investigation in the previous chapter were run for

1000 replications. This reduces the estimation accuracy and allows for better comparisons between

the MMAE techniques and the baseline Monte Carlo analysis. The actual coverage rates for the

baseline techniques using M/M/1 Case 2 data are found in Table 81. The average half widths and

standard deviations are found in Table 83 and Table 85 respectively.

Table 82 presents the actual coverage rates for three Kalman filter techniques. SKF is the

technique that estimates the variance from a single Kalman filter. After obtaining the variance,

a confidence interval is constructed, using Equation (2), the estimated variance and the average

value of all the observations.

MMAE used 13 evenly-spaced filters with a total spread of ± 1.6 times 0. The filters were

centered on the average value of all the observations. A confidence interval is obtained, using

Equation (2), from the MMAE estimate of the mean, Equation (16), and its associated variance,

Equation (17).

MMAE PI uses the probabilistic approach of finding the interval that has 90 percent of the

final MMAE filter probabilities. MMAE PI used 24 evenly-spaced filters centered on the average

value of the observations with a total spread of ± 1.6 times &2. The average half widths for

these three techniques are found in Table 84 and their associated standard deviations are found in

Table 86.
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Table 81. Actual Coverage Rates (Summary of Accepted Techniques)

Data NOBM OBM STDS AUTO]
Size 5 10 20 5 10 20 5 10 20

1280 0.815 0.784 0.730 0.801 0.781 0.735 0.747 0.672 0.531 0.792
2560 0.857 0.843 0.814 0.852 0.826 0.802 0.820 0.765 0.674 0.830
5120 0.881 0.868 0.844 0.878 0.869 0.850 0.843 0.827 0.762 0.845

Note: With nominal rate of 0.9, estimation accuracy is ; ±0.016 for 1000 runs.

Table 82. Actual Coverage Rates (Summary of Kalman Filter Techniques)

Data Size SKF MMAE MMAE PI
1280 0.777 0.732 0.757
2560 0.824 0.800 0.842
5120 0.836 0.855 0.898

Note: With nominal rate of 0.9, estimation accuracy is :- ±0.016 for 1000 runs.

Tables 81 and 82 indicate that, for a large sample size, the MMAE PI technique provides the

highest actual coverage rate of any of the baseline or Kalman filter techniques. At a sample size of

2560, the MMAE PI technique offers coverage rates similar to those provided by the better baseline

techniques (e.g. NOBM and OBM). At the smallest sample size, 1260, the coverage rates provided

by MMAE PI were significantly below those provided by NOBM and OBM with large batches. Of

the three Kalman filter techniques, the SKF technique provided the best coverage rate for the small

sample size. However, as sample size increases the SKF technique did not provide coverage rates

that were competitive with the accepted techniques. The MMAE technique provided coverage rates

that were lower than MMAE PI for all sample sizes. However, the coverage rates were crj.petitive

when compared to the accepted techniques.

Table 83. Average Half Widths (Summary of Accepted Tec1 raques)
Data NOBM OBM STPQ AUTO
Size 1  5 10 20 5 10 20 5 10 20
1280 1.520 1.219 1.009 1.378 1.177 0.992 1.187 0.888 0.595 1.455
2560 1.201 1.018 0.884 1.096 0.971 0.866 1.056 0.823 0.621 0.990
5120 0.898 0.776 0.713 0.830 0.755 0.700 0.806 0.710 0.576 0.700
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Table 84. Average Half Widths (Summary of Kalman Filter Techniques)
Data Size SKF MMAE MMAE PI

1280 1.239 1.285 1.301
2560 0.930 1.000 1.061
5120 0.671 0.722 0.822

Table 85. Standard Deviation of Half Widths (Summary of Accepted Techniques)
Data NOBM OBM STDS AUTO
Size 5 10 20 5 10 20 5 10 20
1280 1.165 0.755 0.508 0.959 0.701 0.492 0.730 0.374 0.167 2.246
2560 0.807 0.592 0.429 0.648 0.526 0.405 0.677 0.398 0.193 0.804
5120 0.525 0.391 0.314 0.435 0.357 0.297 0.471 0.342 0.206 0.365

Tables 83 and 84 indicate that the Kalman filter techniques offer small average half widths

for the levels of coverage they provide. In particular, with a sample size of 5120, MMAE PI had an

average half width of 0.822. This half width is smaller than the average half width (0.898) provided

by the baseline technique with the highest coverage (NOBM with 5 batches). Tables 85 and 86

indicate that, for the levels of coverage provided by the Kalman filter techniques, not only are the

average half widths smaller, as seen in Table 84, but their standard deviations are also smaller.

Conclusions

The results summarized in the previous section demonstrate that the techniques based on

the Kalman filter offer novel and efficient ways to construct meaningful confidence intervals for

steady-state parameters of discrete-event simulations.

Table 86. Standard Deviation of Half Widths (Summary of Kalman Filter Techniques)
Data Size SKF MMAE MMAE PI

1280 1.100 0.933 0.877
2560 0.622 0.656 0.607
5120 0.318 0.346 0.333
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The probabilistic approach (MMAE PI) appears to provide the best results for large sample

sizes. Its performance rapidly degrades as sample size goes down. This might be due to the presence

of some remaining transient data in the system. On the other hand, a M/M/1 model is extremely

complex and the MMAE bank of filters might simply require a large amount of data to stabilize.

The MMAE approach that uses evenly-spaced filters to obtain an estimate of the mean,

Equation (16), and its associated variance, Equation (17), and then uses a t-critical value and

Equation (2) to construct a confidence interval, also provided promising results. However, the

approach that used normally-spaced filters provided low actual coverage rates. Only one case was

run using normally-spaced filters and the total spread value may not have been high enough. This

would have caused an underestimation of the means variance and the intervals half width, resulting

in low actual coverage rates.

The SKF technique provided reasonable coverages when considering its computational ease

(the data is only processed through one estimated filter). However, the variance estimate used in

this method is based on a modified version of an approximation, Equation (32), used by Fishman [10]

in his autoregressive method, and this autoregressive method provided higher actual coverage rates

for all sample sizes. This observation may be indicative of an underlying problem in the estimation

routines used to obtain the "best" Kalman filter. The results in Chapter IV indicated that the

methodology used to estimate the Kalman filter parameters was consistently underestimating the

measurement noise in the AR(2) cases where measurement noise was induced. It was hoped that

the measurement noise would act as a "lack of fit" term when the M/M/1 queue was represented

by an AR(2) model. If, in the M/M/l case, the value of R were higher, the value of K1 would

have been lower and perhaps better estimates of the variance would have been obtained.

The MMAE and SKF approach both made use of a t-critical value. The use of a t-critical

value is appropriate only when the underlying distribution of the sample is normally distributed.

It is not clear if the sampling distribution used in the MMAE technique is normal. The use of the

incorrect multiplier may have caused erroneous results.

In summary, for the trials run in this effort, the MMAE PI technique is clearly the best.

It provides actual coverage rates near or equal to nominal, while keeping the average half width

and the standard deviation of the half widths extremely low. None of the baseline cases or other
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Kalman filter techniques performed as well as MMAE PI for large sample sizes.

Recommendations

In addition to providing excellent results, this research has revealed several areas that offer a

great potential for future research efforts. The following paragraphs discuss some of these areas.

The Kalman filter technique based on the use of one estimated filter provides, in addition

to a reasonable confidence interval, an estimate of the system's underlying variance. None of the

baseline techniques offer this information. This variance information could be exploited in future

research endeavors.

The results obtained by the MMAE and MMAE PI method were excellent. However, these

results may not be the best results obtainable with the Kalman filter methods. As discussed

in Chapter III and seen in the results from Chapter IV, the number of filters used, the spacing

between the filters, and the total spread of the filters are three critical parameters affecting MMAE

performance. The results presented in this effort were based on various combinations of these

parameters that were selected based on the hueristics discussed. A logical follow-on would be to

perform some type of statistical analysis to determine how these issues, and their interactions,

affect the performance measures of the confidence intervals. In particular, various response surface

methodology techniques (e.g., experimental design, and factor analysis) could be utilized for this

purpose.

It would also make sense to plot the final MMAE filter probabilities averaged over the entire

set of runs. ' u,se plots might give a better indication of why some arrangements performed better

than others, and whether or not the use of a t-critical value is appropriate.

An M/M/1 queue is characterized by an interarrival rate and a service rate. Both of these

generate exponentially distributed interarrival and service times, whereas the AR(2) model is based

on normally distributed shocks. This apparent conflict may have been the underlying cause of the

underestimation of R and hence the overestimation of K 1 . Perhaps a different dynamics model

could be found to alleviate this problem.

As discussed in the conclusions section above, the MMAE methods work best with large

sample sizes. It would be interesting to increase the sample size even further and see if the results
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continue to improve.

The MMAE filter's final probabilities may take longer to stabilize if they are subjected to

transient data. The length of the transient in M/M/1 queues can not be analytically determined.

One possible explanation for the MMAE's better performance with larger sample sizes is that not

enough data was truncated. It would be interesting to use both untruncated data and data with

a greater amount of truncation than used in this research (5000 observations). The results of this

analysis could indicate if the MMAE filter probabilities simply require a large sample size, or if

there was transient data still remaining in the data used in this effort and the large sample size

helped to "wash out" the remaining transient.

The set of simulation observations used to estimate the various Kalman filters was the same

set of observations used to generate the residuals. This might have induced a bias problem. It

would be interesting to run the simulation for an even longer sample size, then split the data into

two sets, one for estimating the Kalman filter parameters, and one for actually processing through

the Kalman filter to generate the residuals (and thus the variance estimate).

A final recommendation would be to run paired t tests of the difference between the various

actual coverage rates and average half widths. These tests would indicate if the differences are

statistically significant. Choobineh and Ballard [6] also recommend looking at paired t tests on the

actual coverage rates per unit length of the half width. This t test might give a better impression of

whether one method is statistically different from another, although it does not take into account

the standard deviation of the half widths.
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Appendix A. Computer Routines for Confidence Interval Construction

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE KFMAIN(DS)

INCLUDE '[RHOWARD.LATVERISLAMCOM.FOR'

INCLUDE I[RHOWARD.LATVER]COMVAR.FOR'

C
C THIS SUBROUTINE COMPUTES CONFIDENCE INTERVALS USING BOTH
C FISHMAN'S VARIANCE APPROXIMATION (SKF) METHOD AND THE MMAE
C METHOD USING EVENLY SPACED FILTERS.

C
C LOCAL VARIABLES & DEFINITIONS
C
C FVAR - ESTIMATE OF VARIANCE BASED ON FISHMANS APPROXIMATION

C FSDEV - CORRESPONDIND STANDARD DEVIATION
C FDOF - CORRESPONDING DEGREES OF FREEDOM
C MVAR - ESTIMATE OF VARIANCE BASED ON MMAE

C MSDEV - CORRESPONDING STANDARD DEVIATION
C RESID - SUM OF SQUARED RESIDUALS FROM THE KALMAN FILTER
C A - K.F. CALCULATED COVARIANCE OF RESIDUAL SEQUENCE

C SPREAD - THE AMOUNT SUBTRACTED AND ADDED TO THE AVERAGE VALUE OF X
C TO DETERMINE THE MINIMUM AND MAXIMUM VALUES FOR THE MEAN
C IN THE MMAE BANK OF KALMAN FILTERS
C MEAN(NFILT) - PROPOSED MEAN VALUES FOR EACH OF THE FILTERS
C INCREM - THE INCREMENT (SPACING) BETWEEN ADJACENT FILTERS
C P(NFILT) - THE CONDITIONAL PROBABILITIES OF EACH FILTER BEING THE
C FILTER WITH THE CORRECT MEAN VALUE
C R, TFILT) - THE RESIDUAL VALUE FOR EACH FILTER
C CDF(NFILT) - THE PROBABILITY OF SEEING A GIVEN RESIDUAL IN A FILTER
C NIPLUS - STATE ESTIMATE AFTER PROPAGATION BUT BEFORE MEASUREMENT

C UPDATE
C N2PLUS - STATE ESTIMATE AFTER PROPAGATION BUT BEFORE MEASUREMENT

C UPDATE

C NIMINUS - STATE ESTIMATE AFTER PROPAGATION AND MEASUREMENT UPDATE
C N2MINUS - STATE ESTIMATE AFTER PROPAGATION AND MEASUREMENT UPDATE
C NUM(NFILT) - CDF(NFILT*P(NFILT)
C DENOM - SUMMATION OF ALL NUM(NFILT)

C I,W - USED AS COUNTER INDICES IN DO LOOPS
C

DOUBLE PRECISION RESID,A,FSDEV,FOF,FVAR,MVAR,MSDEV

DOUBLE PRECISION QD,R,SPREAD

DOUBLE PRECISION INCREMTAP(NFILT)
DOUBLE PRECISION MEAN(NFILT),NIMINUS(NFILT),N2MINUS(NFILT),
*I1PLUS(NFILT),N2PLUS(NFILT)

DOUBLE PRECISION ZN(NFILT),RN(NFILT; CDF(NFILT),NUM(NFILT),DENOM

INTEGER I,W,DS
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C
C FIRST CALCULATE VALUES OF RHOl AND RHO2 FOR THE DATA
C

CALL ESTPAR

C
C FIND THE VALUES OF Kl,K2,PHIl, AND PH12 THAT MINIMIZE THE RESIDUAL
C SUM OF SQAURES FOR THE KALMAN FILTER

C

CALL SEARCH

C
C MAKE SURE THE CORRECT VALUES ARE STORED FOR PHIl AND PH12 AND K2

C AND RESID (THE CURRENT VALUES MAY BE ONES FROM A NONOPTIMAL
C POINT IN THE SEARCH ROUTINE, WE ARE ONLY GUARANTEED THAT Ki IS
C THE CORRECT OPTIMAL VALUE)
C

CALL ESTPHI(Kl)
CALL KFRESID(MX,K1,K2,RESID)

C
C USE FISHMANS APPROXIMATION TO ESTIMATE THE VARIANCE AND DEGREES

C OF FREEDOM BASED ON THIS OPTIMAL KALMAN FILTER

C

CALL GETPQR(RESID,QD,R,A)

C
C KEEP TRACK OF STATISTICS FOR OUTPUT REPORT
C

SA(DS) = SA(DS) + A

SQDCOS) = SQD(DS) + QD
SR(DS) = SR(DS) + R
SKI(DS) = SKl(DS) + KI

SK2(DS) = SK2(DS) + K2
SPHII(DS) = SPHIl(DS) + PHIl
SPH12(DS) =SPH12(DS) + PH12
SA2(DS) = SA2(OS) + A*A

SQD2(DS) = SQD2(DS) + QD*QD

SR2(DS) = SR2(OS) + R*R

SK12(DS) = SK12(DS) + Kl*Kl

SK22(DS) = SK22(DS) + K2*K2
SPH'&l2(nS) = SPHIl2(OS) + PHIl*PHI1
SPH122(DS) = SPH122(DS) + PH12*PHI2
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EVAR = QD/(NDAT*(1.-PHIl-PHI2)**2) + R/NDAT
FDOF = (NDAT*(1.-PH11-PHI2))/(4.+4.*PHI2) - 1.
FSDEV = SQRT(FVAR)

SPREAD =SPVAL * FSDEV

C

C USE MMAE TO OBTAIN AN ESTIMATE OF THE MEAN VALUE AND ITS
C ASSOCIA-ED VARIANCE
C

C
C FIRST, INITIALIZE SOME PARAMETERS TO ZERO AND SET THE MEAN VALUE
C TO BE USED IN EACH OF THE FILTERS.

DENOM = 0.0

28 MEANVi) = MX - SPREAD
IF (MEAN(1).LT.o.0) THEN

SPREAD = SPREAD - 0.01
GOTO 28

ENDIF
INCREM = SPREAD/((DBLE(NFILT)-1.0)/2.0)
00 10 I=2,NFILT

MEAN(I) = MEAN~i) + (INCREM*(I-1))
10 CONTINUE

C

C SET THE A PRIORI PROBABILITY INFORMATION FOR EACH OF THE FILTERS.
C THE PROGRAM IS SET UP TO GIVE THE INITIAL PROBABILITIES A UNIFORM
C DISTRIBUTION OR A TRIANGULAR DISTRIBUTION. IF YOU WANT A
C TRIANGULAR DISTRIBUTION PUT A 'C' (COMMENT MARK) IN THE FIRST
C POSITION ON THE LINE THAT SAYS GOTO 121
C

00 120 I 1,NFILT

P(I) l ./DBLE(NFILT)

120 CONTINUE

C GOTO 121

P(l) l ./121.
P(2) =2./121.
P(3) 3./121.

P(4W 4./121.

P(6) =6./121.

P(8) 7 ./121.

P(8) = 8./121.

P(10) = g./121.
P(10) 11./121.
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P(12) = 10./121.
P(13) = 9./121.
P(14) = 8./121.
P(15) =7./121.

P(16) =6./121.
P(17) S ./121.

P(18) 4./121.

P(19) 3 ./121.
P(20) =2./121.

P(21) l ./121.

121 CONTINUE

C
C PROPAGATE AND UPDATE EACH OF THE FILTERS THROUGH THE ENTIRE SET OF
C DATA ON EACH PASS UPDATE THE CONDITIONAL PROBABILITY OF EACH FILTER
C BEING THE CORRECT ONE

C

NiPLUS~i) = 0

N2PLUS(1) = 0

DO 20 W = 1,NDAT

DO 30 I = 1,NFILT

NlMINUSCI) = PHIl * NiPLUSCI) + PH12 *N2PLUS(I)

N2MINUS(I) =NIPLUS(I)
ZN(I) = X(W) -MEANCI)

RN(I) =ZN(I) - NMINUSCI)
NlPLUSCI) =NiMINUSCI) + K1*RNCI)
N2PLUS(I) =N2MINUS(I) + K2*RN(I)
CDF(I) = (l./SQRT(2.*3.1415926*A))*EXP(-.s*

* (RN(I)**2)*(1./A))

IF (CDFCI).LT.1D-10) CDF(I) = 1D-10
NUM(I) =CDF(I)*P(I)

DENOM DENOM + NUMCI)
30 CONTINUE

DO 40 I = 1,NFILT
P(I) = NUM(I)/DENOM

IF CP(I).LT.1D-20) P(I) = 1D-20

40 CONTINUE

DENOM =0.0

20 CONTINUE

C
C OBTAIN THE MMAE ESTIMATE FOR THE MEAN VALUE AND IT'S VARIANCE
C

MMX = 0.
MVAR = 0.

DO 50 1I 1,NFILT
MMX =MMX + MEAN(I)*PCI)
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so CONTINUE

DO 60 1 = 1,NFILT
MVAR = MVAR + ((MEAN(I)-MMX)*(MEAN(I)-MMX)*P(I))

60 CONTINUE

MSDEV = DSQRT(MVAR)

C
C THESE COUNTER LINES KEEP TRACK OF THE TWO ESTIMATES OF THE MEAN

C (MX AND MMX) SQUARED DEVIATIONS FROM THE TRUE VALUE.
C

SMXD(DS) = SMXD(DS)+(MX - TRUVAL)
SMMXD(DS) = SMMXD(DS)+(MMX - TRUVAL)

SMXD2(DS) = SMXD2(DS)+(MX-TRUVAL)*(MX-TRUVAL)

SMMXD2(DS) = SMMXD2(DS)+(MMX-TRUVAL)*(MMX-TRUVAL)

C
C CALL SUBROUTINE CI TO CALCULATE CONFIDENCE INTERVALS
C
C

CALL CI(FSDEV,5,DS,I)
CALL CI(MSDEV,6,DS,1)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CI(STDEV,J,DS,BS)

INCLUDE '[RHOWARD.LATVER]COMVAR.FOR'
INCLUDE '[RHOWARD.LATVER]SLAMCOM.FOR'

C THIS SUBROUTINE CALCULATES A CONFIDENCE INTERVAL AND KEEPS TRACK
C OF THE NECESSARY STATISTICS FOR THE !ONTE CARLO ANALYSIS
C

C LOCAL VARIABLES & DEFINITIONS

C
C STDEV - THE STANDARD DEVIATION
C CONF - (I - ALPHA/2) E.G. FOR A 90% CONFIDENCE INTERVAL CONF = 0.95

C J - THE METHOD NUMBER

C 5 = K.F. USING FISHMANS APPROXIMATION FOR VARIANCE
C 6 = K.F. USING MMAE VARIANCE
C 4 = FISHMAN'S AUTOREGRESSIVE TECHNIQUE
C I = NON-OVERLAPPING BATCH MEANS
C 2 = OVERLAPPING BATCH MEANS
C 3 = STANDARDIZED TIME SERIES
C HW - THE INTERVALS HALF-WIDTH

C LB - THE INTERVALS LOWER BOUND
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C UB - THE INTERVALS UPPER BOUND

C BS = BATCH SIZE DESIGNATOR (SEE SLAMCOM FOR EXPLANATION)
C DS = DATA SIZE DESIGNATOR (SEE SLAMCOM FOR EXPLANATION)

INTEGER J,DS,BS

DOUBLE PRECISION STDEV,HW,LB,UB,MEANVAL

C
C SET MEANVAL = MX OR MMX DEPENDING ON WHICH ESTIMATE OF THE MEAN YOU WANT

C

IF (J.EQ.6) THEN
MEANVAL = MMX

ELSE
MEANVAL = MX

ENDIF

HW = TCRIT(J,BS)*STDEV

LB = MEANVAL - HW
UB = MEANVAL + HW
IF (LB.LE.truval.AND.UB.GE.truval COVER(J,DS,BS)=COVER(J,DS,BS)+1.
SUMW(JDS,BS) = SUMW(J,DS,BS) + HW

SUMW2(J,DS,BS) = SUMW2(J,DS,BS) + HW*HW

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ESTPAR

INCLUDE '[RHOWARD.LATVER]COMVAR.FOR'

INCLUDE 'ERHOWARD.LATVER]SLAMCOM.FOR'

C
C THIS SUBROUTINE ESTIMATES THE NECESSARY PARAMETERS (PHIl AND PHI2)
C FOR PROCESSING THE DATA THROUGH A KALMAN FILTER.

C
C LOCAL VARIABLES & DEFINITIONS

C
C NUMi - FIRST ORDER LAG COVARIANCE
C NIJM2 - SECOND ORDER LAG COVARIANCE
C SUMSQR - SUM OF SQUARED DEVIATIONS OF OBSERVATIONS FROM MX
C L - USED AS COUNTER INDEX IN DO LOOP

C

DOUBLE PRECISION BUM1,NUM2,SUMSQR

INTEGER L

NUmi = 0.
NUM2 = 0.
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SUMSQR (X(l)-MX)**2
DO 10 L 2,NDAT

NUMI NUM1 + (X(L)-MX)*(X(L-1)-MX)
SUMSQR = SUMSQR + (X(L)-MX)**2

IF (L.EQ.2) GOTO 10

NUM2 = NUM2 + (X(L)-MX)*(X(L-2)-MX)
10 CONTINUE

RHOI = NUMl/SUMSQR

RHO2 = UM2/SUMSQR

RETURN

END

CcccCCCCcCCCcccCCccCcccccccccccccCCccCCcCccccccccCCcCcCccCcccCc

SUBROUTINE ESTPHI CV)

INCLUDE 'ERHOWARD.LATVER]COMVAR.FOR'

INCLUDE '[RHOWARD.LATVER)SLAMCOM.FOR'

C

C THIS SUBROUTINE CALCULATES THE VALUES OF PHIl AND PH12 FOR THE
C KALMAN FILTER GIVEN A SPECIFIC VALUE OF Ki AS ITS ARGUMENT (V)

C

C LOCAL VARIABLES AND DEFINITIONS
C
C V - GIVEN VALUE OF Kl IN THE KALMAN FILTER

C

DOUBLE PRECISION V
PH12 = (RH02*V - RHO1**2)/(V**2 - RHOl**2)
PHIl = CR501 - RH01*PH12)/V

C

C IF THE CALCULATED VALUES OF PHIl AND PH12 WOULD MAKE THIS AN
C UNSTABLE AR(2) SET THE VALUE OF PEIl TO 999.

C

IF CABS(PH12).GE.1.OR.PHI1+PHI2.GEa.1OR.PHI2-PHIl..GE.
*1) PHIl = 999.

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE SEARCH

INCLUDE '[RHOWARD.LATVERJCOMVAR.FOR'
INCLUDE 'ERHOHARD.LATVERJSLAMCOM.FOR'
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C
C THIS SUBROUTINE USES THE METHOD OF GOLDEN SECTIONS TO SEARCH FOR THE

C VALUE OF KI THAT MINIMIZES THE RESIDUAL SUM OF SQUARED ERRORS IN A

C KALMAN FILTER BASED ON AN AR(2) MODEL WITH ESTIMATED VALUES OF
C PHIl AND PHI2

C
C LOCAL VARIABLES & DEFINITIONS
C
C TOL - THE TOLERANCE RANGE FOR ENDING THE SEARCH ROUTINE
C Q - CURRENT LOWER BOUNDARY FOR SEARCH
C R - CURRENT UPPER BOUNDARY FOR SEARCH
C DELTA - GOLDEN RATION FOR DETERMINING POINTS
C PT1 - GOLDEN SECTION SEARCH POINT NEARER Q
C PT2 - GOLDEN SECTION SEARCH POINT NEARER R
C COUNT - INDEX TO INSURE SEARCH DOESN'T ENTER AN ENDLESS LOOP

C Vl,V2,V3,V4 - SUM OF SQUARED RESIDUALS USING POINTS Q,PT1,PT2, AND
C R RESPECTIVELY

C

DOUBLE PRECISION TOL,CHECK,DELTA,QP,RP,V1,V2,V3,V4,PTI,PT2

INTEGER COUNT
PARAMETER (DELTA=0.618)
PARAMETER (TOL = 0.002)

EXTERNAL CHECK
DOUBLE PRECISION ETLP

C
C INITIALIZE SEARCH SPACE FOR POSSIBLE VALUES OF K

C

QP=O.00001
RP=1.0
COUNT = 0

C
C DETERMINE FIRST TWO POINTS

C

PT1 = RP - DELTA*(RP-QP)

PT2 = QP + DELTA*(RP-QP)

C
C INITIALIZE VALUES FOR FIRST FOUR POINTS

C

VI = CHECK(QP)

V2 = CHECK(PT1)
V3 = CHECK(PT2)

V4 = CHECK(RP)
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C
C CHECK POINTS & ELIMINATE SECTION & SHUFFLE POINTS/VALUES
C

10 COUNT = COUNT + 1

ETLP = RP-QP
IF ((V1. LT. V3. AND. Vl.LT. V4). OR. (V2.LT. V3. AND.V2. LT. V4)) THEN

RP = PT2
PT2 = PT1

PT1 = RP - DELTA * (RP-QP)
V4 = V3
V3 = V2
V2 = CHECK(PT1)

ELSE IF ((V3. LT. V1. AND. V3.LT. V2). OR. (V4.LT. V1. AND. V4. LT. V2)) THEN
QP = PT1
PTI = PT2

PT2 = QP + DELTA*(RP-QP)
VI = V2

V2 = V3
V3 = CHECK(PT2)

END IF

C
C SEE IF STOPPING RULE IS MET

C

IF (ETLP.EQ.RP-QP) GOTO 15
IF (COUNT.GT.60) GOTO 20
IF ((RP-QP).GT.TOL) GOTO 10

C
C STOPPING RULE MET SO ASSIGN VALUE FOR Ki

C

15 Kl = (RP+QP)/2.0

20 RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DOUBLE PRECISION FUNCTION CHECK(V)

INCLUDE '[RHOWARD.LATVER]COMVAR.FOR'

INCLUDE 'EOWARD.LATVER]SLAMCOM.FOR'

C
C THIS FUNCTION EVALUATES THE SUM OF SQUARED RESIDUALS FOR A FILTER
C WITH A Ki VALUE OF V

C
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DOUBLE PRECISION V

C FIRST FIND THE VALUES OF PHIl AND PHI2 FOR THIS PARTICULAR VALUE
C OF Ki

C

CALL ESTPHI(V)

C
C IF ESTPHI ASSIGNED A VALUE OF 999. TO PHIl THEN Ki IS NOT AN

C ALLOWABLE VALUE SO SET THE FUNCTION TO AN EXTREMELY LARGE NUMBER.

IF (PHI1.EQ.999.) THEN

CHECK = 99999999999999999999.
GOTO 10

ENDIF

C
C IF ESTPHI FOUND ADMISSIBLE VALUES FOR PHIl AND PHI2 FIND THE VALUE
C OF THE SUM OF SQUARTED RESIDUALS

C

CALL KFRESID(MX,V,K2,RESID)

CHECK = RESID

10 RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE KFRESID(TMEAN,TK1,TK2,RESID)

INCLUDE '[RHOWARD.LATVERJCOMVAR.FOR'

INCLUDE 'ERHOWARD.LATVER]SLAMCOM.FOR'

C
C THIS SUBROUTINE USES A KALMAN FILTER TO PROPOGATE AND UPDATE STATE

C ESTIMATES AD KEEPS TRACK OF THE SUM OF SQUARED RESIDUALS FOR THE FILTER

C
C LOCAL VARIABLES AND DEFINITIONS
C
C TMEAN - MEAN VALUE OF THE PROCESS TO BE USED IN FILTER
C TKI - VALUE OF KI TO BE USED IN FILTER

C TK2 - VALUE OF K2 TO BE USED IN FILTER
C NIPLUS - STATE ESTIMATE AFTER PROPAGATION BUT BEFORE MEASUREMENT UPDATE
C N2PLUS - STATE ESTIMATE AFTER PROPAGATION BUT BEFORE MEASUREMENT UPDATE
C NIlMINUS - STATE ESTIMATE AFTER PROPAGATION AND MEASUREMENT UPDATE
C I2MINUS - STATE ESTIMATE AFTER PROPAGATION AND MEASUREMENT UPDATE

C RN - RESIDUAL VALUE
C ZN - MEASUREMENT 9OBSERVATION FROM PROCESS MMINUS ITS MEAN)
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C RESID - RUNNING SUM OF SQUARED RESIDUALS

C W - COUNTER INDEX FOR DO LOOP
C PMEAN - OPTIONAL VARIABLE TO CALCULATE AVERAGE STATE ESTIMATE
C

DOUBLE PRECISION TKI,TK2,TMEAN,N1PLUS,N2PLUS,PMEAN

DOUBLE PRECISION NiMINUS,N2MINUS,RN,ZNRESID

INTEGER W

C
C INITIALIZE VALUES AND CALCULATE K2

C

C pmean 0.

NiPLUS = 0.
N2PLUS = 0.

RESID = 0.
TK2 = ((PHII*TK1) - (PHI1*(TK1**2)))/(1-PHI2 + (PHI2*TKI))

C
C RUN DATA THROUGH KALMAN FILTER
C

DO 10 W = 1,NDAT,1

NIMINUS = PHIl * NIPLUS + PHI2 * N2PLUS

N2MINUS = NIPLUS

ZN = X(W) - TMEAN

RN = ZN - NIMINUS

NiPLUS NiMINUS + TK1*RN
N2PLUS = N2MINUS + TK2*RN
RESID = RESID + RN*RN

10 CONTINUE

C
C IF USING PMEAN CALCULATE ITS VALUE
C

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE GETPQR(RESID,QD,R,A)

INCLUDE 'LRHOWARD.LATVER]COMVAR.FOR'
INCLUDE '[RHOWARD.LATVER]SLAMCOM.FORI

C
C THIS SUBROUTINE BACKS OUT THE VALUES OF QD AND R GIVEN Kl,K2, AND RESID
C IT ALSO CALCULATES THE VALUE OF A FOR USE IN MMAE
C
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C LOCAL VARIABLES & DEFINITIONS

C
C RESID - VALUE OF SUM OF SQUARED RESIDUALS FROM THE X.F.
C QD -CALCULATED VALUE FOR COVARIANCE OF PROCESS
C R -CALCULATED VALUE FOR COVARIANCE OF MEASUREMENT NOISE
C A -VALUE OF COVARIANCE OF RESIDUAL SEQUENCE
C P11M,P12M,P22M - ELEMENTS OF THE K.F. PH- COVARIANCE MATRIX
C P(-) MEANS BEFORE MEASUREMEMT UPDATE
C P11P,P12P,P22P - ELEMENTS OF THE K.F. P(+) COVARIANCE MATRIX
C P(+) MEANS BEFORE MEASUREMENT UPDATE
C

DOUBLE PRECISION QD,R,PllM,Pl2M.P22M,PllP,Pl2P,P22P ,A,RESID

P11M =(Kl*RESID)/NDAT

R = RESID/IDAT - P1114
A = P11M + R
P12M = K2*A

P11P = P11M - ((PllM**2)/A)
P22M4 = PluP
P12P = P12M - ((Pl1M*Pl2M)/A)

P22P =P22M - (CP12M**2)/A)

QD=P11M4 - ((PHI1*C(PHII*PllP)+(PHI2*Pl2P)))+(PHI2*((PHIl
**Pl2P) +(PHI2*P22P))))

RETURN
END

CCCC CCCCCCCC C CC CCCCCCCCCCC CCCCC CCCCCCCCCCCCCCCCCCCCCC CCCCCCC CCCCCCCCC

SUBROUTINE MAIYB(DS)

INCLUDE 'ERHOWARD.LATVER)COMVAR.FOR'
INCLUDE 'CRHOWARD.LATVER]SLAMCOM.FOR'

C THIS SUBROUTINE COMPUTES CONFIDENCE INTERVALS USING THE FOLLOWING
C THREE METHODS THAT REQUIRE THE SELECTION OF A BATCH SIZE TO RUM
C
C METHOD * METHOD NAME
C -- - - -- - - - - - - - - - - - - -

C 1 NON-OVERLAPPING BATCH MEANS
C 2 OVERLAPPING BATCH MEANS
C 3 STANDARDIZED TIME SERIES
C
C LOCAL VARIABLES A DEFINITIONS
C
C BATSIZ - BATCH SIZE
C IBATCH - TOTAL NUMBER OF BATCHES (MUST BE LESS THAN 100)

102



C (NOTE! THIS RELATION MUST HOLD TRUE :: NDAT = NBATCH * BATSIZ)

C (IF USER WANTS MORE THAN 100 BATCHES REDIMENSION ARRAYS IN

C NOBM,OBM, AND STDS)

C

INTEGER JDS

DO 10 J = 1,3

NBATCH = BAMT(J)

BATSIZ = DSIZE(DS)/NBATCH

CALL NOBM(DS,J)

CALL OBM(DS,J)

CALL STDS(DS,J)

10 CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE NOBM(DS ,BS)

INCLUDE '[RHOWARD.LATVER]SLAMCOM.FOR'

C

C NON-OVERLAPPING BATCH MEANS CODE FOR CONSTRUCTING CONFIDENCE INTERVALS

C

C LOCAL VARIABLES & DEFINITIONS

C

C NM - COUNTER INDICES FOR DO LOOPS

C XBAR(100) - VECTOR OF BATCH MEANS

C NVAR - NON-OVERLAPPING BATCH MEANS VARIANCE

C NSDEV - CORRESPONDING STANDARD DEVIATION

C SUMX - RUNNING SUM OF OBSERVATIONS IN A BATCH

C SUMVAR - RUNNING SUM OF SQAURED DEVIATIONS OF BATCH MEANS FROM

C GRAND MEAN

C

INTEGER N,M,DS,BS

DOUBLE PRECISION XBAR(20),NVAR,NSDEV,SUX,SUMVAR

C

C INITIALIZE VALUES

C

SUMVAR = 0.0

C
C CALCULATE BATCH MEANS
C
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DO 20 M = 1,NBATCH

SUMX = 0.0

DO 30 N = (M-1)*BATSIZ+1,M*BATSIZ
SUMX=SUMX+X(N)

30 CONTINUE
XBAR(M) = SUMX/BATSIZ

20 CONTINUE

C
C CALCULATE ESTIMATE OF VARIANCE AND HALF-WIDTH

C

DO 40 M = 1,NBATCH

SUMVAR = SUMVAR + ((XBAR(M) - MX)**2)
40 CONTINUE

NVAR = SUMVAR/((NBATCH-1.0)*NBATCH)

NSDEV = DSQRT(NVAR)

C
C CALCULATE CONFIDENCE INTERVAL
C

CALL CI(NSDEV,1,DS,BS)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE OBM(DS,BS)

INCLUDE '[RHOWARD.LATVER]SLAMCOM.FOR'

C
C THIS SUBROUTINE CONSTRUCTS A CONFIDENCE INTERVAL BASED ON THE

C METHOD OF OVERLAPPING BATCH MEANS
C
C LOCAL VARIABLES & DEFINITIONS

C

C XBAR(10000) - VECTOR OF BATCH MEANS
C NM - COUNTER INDICES FOR DO LOOPS

C SUMX - RUNNING SUN OF OBSERVATIONS IN A BATCH

C SUVAR - RUNNING SUM OF SQUARED DEVIATIONS OF BATCH MEANS FROM THE
C GRAND MEAN

C OVAR - OVERLAPPING BATCH MEANS VARIANCE

C OSDEV - CORRESPONDING VARIANCE

C B - DUMMY VARIABLE USED IN COMPUTING ODOF
C

DOUBLE PRECISION XBAR(5000),NBTCH
INTEGER N,M,DS,BS
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DOUBLE PRECISION OVAR,*OSDEV ,SUMX ,SUMVAR

C
C INITIALIZE VALUES
C

NBTCH=NDAT-BATSIZ+1 .0

SUMVAR = 0.0

C
C CALCULATE OVERLAPPING BATCHED MEANS
C

DO 20 M = 1,NBTCH

SUMX =0.0
DO 30 N =M,BATSIZ+M-l

SUMX = SUMX + X(N)
30 CONTINUE

XBAR(M) = SUMX/BATSIZ
20 CONTINUE

C
C CALCULATE ESTIMATE OF VARIANCE AND DEGREES OF FREEDOM
C

DO 40 M = 2.,NBTCH
SUMVAR =SUNVAR + ((XBAR(M) - MX)**2)

40 CONTINUE

OVAR BATSIZ* SUM VAR/C (NBTCH- 1) *NBTCH)
OSDEV =DSQRT(OVAR)

C
C CALCULATE CONFIDENCE INTERVAL

C

CALL CI(OSDEV,2,DSBS)

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE STDS (DS ,BS)

INCLUDE 'URHOWARD.LATVERJSLAMCOM.FOR'

C
C STANDARDIZED TIME-SERIES CODE FOR CONSTRUCTING CONFIDENCE INTERVALS
C

C LOCAL VARIABLES ft DEFINITIONS
C
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C CUMA
C CUMS
C SUNX
C XBAR(100)

C SVAR
C SSDEV
C SDOF
C XAV(100,100)

C sl(1004100)

C A(100)
C

DOUBLE PRECISION CUMA,CUMS
INTEGER I,N,M,K,JDS,BS
DOUBLE PRECISION XBAR(20) ,SUMXSUMVAR
DOUBLE PRECISION SVAR,SSDEV,SDOF

DOUBLE PRECISION XAV(20,1024), S1(20,1024),A(20)

C
C INITIALIZE VALUES
C

SUMVAR = 0.0

CUMA = 0.0

CUMS = 0.0
SVAR= 0.0

C
C CALCULATE BATCH MEANS

C

DO 20 M = 1,NBATCH
SUMX =0.0

DO 30 N = (M-1)*BATSIZ+1,M*BATSIZ
SUNX=SUMX+X (N)

30 CONTINUE
XBAR(M) = SUMX/BATSIZ

20 CONTINUE

C

C CALCULATE THE CUMULATIVE AVER~AGE OF THE FIRST J OHS IN THE I'TH BATCH
C ANDl CENTER THE TINE SERIES (CALCULATE S VALUES)
C

DO 40 I = 1,NBATCH
DO 50 J = 1,BATSIZ

DO 60 K = 1+((I-1)*BATsIZ),J+((1-1)*BATSIZ)
CUllS = CUMS+X(K)

60 CONTINUE
XAV(I ,J)=(1 ./DBLE(J))*CUMS
CUllS =0 0
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SI(I ,J)=J*(XBAR(I)-XAV(I ,.))

CUMA = CUMA + S1(I,J)
50 CONTINUE

A(I) =CUMA

SVAR = SVAR + A(I)**2
CUMA=O .0

40 CONTINUE

C

C CALCULATE ESTIMATE OF STANDARD DEVIATION AND DEGREES OF FREEDOM
C

SSDEV SQRT(12.) * DSQRT(SVAR/NDAT /NDAT/(BATSIZ**2-1 .))
SDOF =NBATCH

C

C CALCULATE CONFIDENCE INTERVAL
C

CALL CI(SSDEV,3,DS,BS)

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE MAINNB(DS)

INCLUDE '[RHOWARD.LATVER]SLAMCOM.FOR'

C
C THIS SUBROUTINE CALCULATES CONFIDENCE INTERVALS USING THOSE
C TECHNIQUES THAT DO NOT REQUIRE THE SELECTION OF A BATCH SIZE.
C

C METHOD # METHOD NAME

C -- - - -- - - - - - - - - - - - - -

C 4 AUTOREGRESSIVE
C

C

C BEGIN CALCULATTING CI'S

C

INTEGER OS

CALL AUTOR(DS)

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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SUBROUTINE AUTOR(DS)

C
C AUTOREGRESSIVE CODE FOR CONSTRUCTING CONFIDENCE INTERVALS

C
C THIS CODE IS A MODIFIED VERSION OF A CODE WRITTEN BY GEORGE FISHMAN.

C
C THE ORIGINAL CODE CAN BE FOUND IN:

C "Principles of Discrete Event Simulation"
C John Wiley & Sons, New York, NY
C Copywrite 1978
C
C THIS CODE HAS BEEN MODIFIED TO CONSTRUCT CONFIDENCE INTERVALS FOR A MONTE
C CARLO EVALUATION AND TO USE DOUBLE PRECISION VARIABLES
C

C VARIABLE DEFINITIONS

C

ITNCLUDE '[RHOWARD.LATVER)SLAMCOM.FOR'

INTEGER I ,NDX, IORDER,DS

DOUBLE PRECISIO9 N
INTEGER NBND/2/ ,MAXNDX/51/

INTEGER JR(2,2)
DOUBLE PRECISION R(52),S(52) ,VXBAR(52),DFV(52),STAT(2,52)
DOUBLE PRECISION B(1500),BND(2),ALPHA,ASDEV,ADOF
BND(1) = .05

BND(2) = .01

ALPHA =0.100

CALL ARMTHD(BND,NBND,R,S,B,XBAR,VXBAR,DFV,

1JR,ALPHA ,STAT,NDX ,MAXNDX)

IF (NDX.GE.MAXNDX.OR.NDX.LE.0) GO TO 28

IORDER = NDX - 1

C WRITE (1,*) IORDER, I IORDER'

ASDEV = DSQRT(VXBAR(IORDER+1))
ADOF = DFV(IORDER+1)

TCRIT(4,1) =STUDTP(ADOF,CONF)
CALL CI(ASDEV,4,DS,1)
GO TO 36

28 PRINT *,'ERROR -- CAN NOT FIT AN AR MODEL'!'

36 RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE ARMTHD(BND ,NBND ,R,S ,B ,XBAR,VXBAR,DFVJR,

1ALPHA ,STAT, NDX MAXNDX)
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C
C THIS CODE IS A MODIFIED VERSION OF A CODE WRITTEN BY GEORGE FISHMAN.
C
C THE ORIGINAL CODE CAN BE FOUND IN:

C "Principles of Discrete Event Simulation"
C John Wiley & Sons, New York, NY

C Copywrite 1978
C

INCLUDE '[RHOWARD .LATVER] SLAMCOM .FOR'

DOUBLE PRECISION AVG,VAR,EPS,COV,SUMV,SUMWL,SUMS,SUML
DOUBLE PRECISION R(l),S(l),B(l),VXBAR(1),RHO(1),DFV(l)

DOUBLE PRECISION STAT(2,1),BND(l)
INTEGER FIVEK/5000/
INTEGER NBNI3,NDX,MAXNDX,JR(2, 1)
DOUBLE PRECISION I
NDX- 1
N = NDAT
IF(N.LE.2) RETURN

AVG=MX
VAR=0. OD+00
DO 2 1=~1,N

VAR=VAR+ (X(I)-AVG)**2

2 CONTINUE
VAR=VAR/N
XBAR=AVG
R(1)=VAR

IF (MAXNDX.LE.3) RETURN
NMI = INT(K)-l
IF (N.GE.MAXNDX) NM1=MAXNDX-1
DO 4 LAG=1,NM1

COV=0. OD+O0
NMLAG=INT(N)-LAG
DO 3 J=1,NNLAG

COV=COV+(X(J)-AVG)*(X(J+LAG)-AVG)
3 CONTINUE

COV=COV/NMLAG
LAGP1=LAG+l

R(LAGP1 )=COV
4 CONTINUE

R(LAGP1+1)=O .0

B(1)=1 .0
S(1)=R(l)

B(2)=1 .0
SUS=-R(2)/R(l)
B(3)=SUMS
SUMS=SUMS*RC2)
SUMV=R( 1) +SUI4S
SUMWL=R(3)+SUMS
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S(2)=SUMV
IKDX=3
Nm1p1=Nm1+1
DO 15 I=3,NM1Pl

IHl=I-1

INDX=INDX+l
B(INDX)=1 .0

SUMS=-SUMWL/SUMV
SUM V= VAR

SUMWL=R(I+l)
DO 18 J=2,IM1

INDX=INDX+ I

COV=B(INDX-IM1)+SUMS*B(INDX-2*(J-1))

SUMV=SUMV+COV*R( J)

SUMWL=SUMWL+COV*R(CI-J+2)
B(INflX)=COV

18 CONTINUE
INDX= INDX+ 1
BC INDX) =SUMS

SUMV=SUMV+SUNS*R( I)
SUMWL=SUMWL+SUMS*RC 2)

SCI)=SUMV
1s CONTINUE

SMAX= SUM V
DF=NMI

NDX=NM1+1
STAT(1 ,1)=N*C1 .0-SMAX/S~l))
STAT(2, 1) =CHISQP(DF, 1.0-ALPHA)

IF(STATC1,l) .LE.STATC2,1))NDX=1

INDX= 1

SUMS=B(CINDX)
VXBAR( 1) =S(1)/CSUMS*SUMS*N)
DFVC1)=N-1

DO 21 JRK=2,NM1
DF:NM1+1-JRK

STAT(1 ,JRK)1N*C1.0-sMAX/S(JRK))
STATC2, JRK)=CHISQPCDF,1.0-ALPHA)
IF(STATC1,JRK).LE.STAT(2,JRK).AND.NDX.GT.JRX) RDX=JRK
SUMS=0 .OD+0O

SUML=0.OD+00
DO 13 J=1,JRK

I IDX=INFDX+ 1
SUML=SUML+CJRK-1-2*CJ-1) )*B(INDX)

S'JMS=SUMS+B(CINFDX)
13 CONTINUE

DFV(JRK)=N*SUMS/C2 .OD+00*SUML)

VXBARC iRK)=S CJRK) /(SUMS*SUMS*N)
21 CONTINUE

IF (NDX.GT.NMI) NDX=NM1
SCLAGP1+1)=SCIDX)

IF (NBND.LT.1) RETURN
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DO 223 LRM = 1,2
DO 120 J=1,NDX

S(J)=(2-LRM)*R(J)/VAR+( 1-LRM)

120 CONTINUE
K= 1
EPS=BND (K)
JRK=NDX- 1

INDX= (NDX+1) *NDX/2+1-JR(
DO 22 J=1,FIVEK

SUMV=0 OD+0
IKn1= INDX+ JRK
DO 23 I=1,JRK

INDX: INDX- 1
SUMV=SUMV-B(INTDX)*S (I)
S(I)=S(I+1)

23 CONTINUE
SJRK ) =SUM V

122 IF (DABS(SUMV).GT.EPS) GO TO 22
JR(LRM,K)=J

IF (K.GE.NBND) GO TO 223
K= K+1
EPS=BND (K)
GO TO 122

22 CONTINUE

DO 222 KK=K,NBND
JR(LRM,KK)=FIVEK 1

222 CONTINUE
223 CONTINUE

RETURN
END

CCC CCCCCCCCCCCC CCCCCCCCCCCCCCCC CCC CCCCCCCCCCC CCCC CCCCC CCCCCCCCCCCCCCC

FUNCTION STDZ(P)

C
C THIS CODE IS A MODIFIED VERSION OF A CODE WRITTEN BY GEORGE FISHMAN.
C
C THE ORIGINAL CODE CAN BE FOUND IN:
C "Principles of Discrete Event Simulation"
C John Wiley & Sons, New York, NY
C Copywrite 1978

C

DOUBLE PRECISION C(3),D(3),P,Q,T,XP,NUM,DEN
DATA C/2.S15517, .8082853, .010328/,DI1.432788, .189269, .001308/
Q=P

IF (P.GT. .5) Q=1.0-Q

T=SQRT(-2 .0*DLOG(Q))
NUM=(C (3) *T+C (2) )*T+C( 1)



DEN=((D(3)*T+D(2))*T+D(l))*T+1 .0

XP=T-'M/DEN
IF (P.LT. .5) XP=-XP
STDZ=XP
RETURN

END

cCcCCccccccccccccccccccccCcccCCCCccCccCccCcccccccCcccCCCCcCccCCCCcc

FUNCTION CHISQP(DF,P)

C
C THIS CODE IS A MODIFIED VERSION OF A CODE WRITTEN BY GEORGE FISHMAN.
C
C THE ORIGINAL CODE CAN BE FOUND IN:

C "Principles of Discrete Event Simulation"
C John Wiley & Sons, New York, NY
C Copywrite 1978

C

DOUBLE PRECISION Y,DF,Z,YSQ,SQDF,SQHALF,H(7)

DATA OLDZ/-10.OI,OLDDF,OLDPI-1.0,-1.0/

CHISQP=0 .0

IF(P.EQ.OLDP) GO TO 1
OLDP=P
Z=STDZ(P)

1 CONTINUE

IF (DF.LE.0) RETURN
CHISQP=CHISQ
IF (OLDDF.EQ.DF.AND.OLDZ.EQ.Z) RETURN
CHISQO . 0
CHISQP=CHISQ

SQDF. 9QRT(DF)
OLDDF=SQRT(DF)

OLDDF=DF

IF CZ.EQ.OLDZ) GO TO 2
OLDZ=Z

Y=Z
SQHALF=SQRT( .5)

YSQ=Y*Y

H( 1) =Y/SQHALF
H(2)=2.0*(YSQ-1.0)/3.O
H(3)=(YSQ-7. 0)*Y*SQHALF/9 .0
H(4)=-( (6. 0*YSQ414. 0)*YSQ-32 .0)/405.0
H(S)=((9.O*YSQ+256.0)*YSQ-433.0)*Y*SQHALFI486O.
H(6)=(((12.*YSQ-243.0)*YSQ-923.0)*YSQ+1472.0)/2ss 15.0
H(7)=-C((3753.0*YSQ+4353.0)*YSQ-289517.C)*YSQ-289717.O)*Y*
ISQHALF/9185400 .0

2 CONTINUE
CHISq=H(7)
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DO 20 IBACK=1,6
I=7-IBACK
CHISQ=CHISQ/SQDF+H( I)

20 CONTINUE
CHISQ=(CHISQ/SQDF+1 .O)*DF
CHISQP=CHISQ
RETURN
END

cCcCCccccccccccccccCccCcccccCCCCCCCccccCcccccc~c~CccCCCC~ccCCCccccc

DOUBLE PRECISION FUNCTION STUDTP(DF,P)

C
C THIS CODE IS A MODIFIED VERSION OF A CODE WRITTEN BY GEORGE FISHMAN.
C
C THE ORIGINAL CODE CAN BE FOUND IN:
c "Principles of Discrete Event Simulation
C John Wiley & Sons, New York, NY
C Copyirite 1978

C

DOUBLE PRECISION Z,ZZ,DF,OLDZ,OLDDF,OLDP,H(4)

DATA OLDP,OLDDF/-1.O,-1.O/,OLDZ/-iO.0/

STUDTP=0 .0
IF(P.EQ.OLDP) GO TO 4

OLDP=P

Z=STDZ(P)

IF (ZLE.0.0) Z = -Z
GO TO 4

4 CONTINUE

IF (DF.LE.O.O) RETURN
STUDTP=STUI)T

IF(OLDDF.EQ.DF.AND.OLDZ.EQ.Z) RETURN
OLDDF=DF
STUDT=O .0
STUDTP =STUDT
IF(Z.GE.O) GO TO 3
P=1 .0-P

Z=-Z
3 CONTINUE

IF(OLDZ.EQ.Z) GO TO 2

OLDZ=Z
ZZ=Z*Z
H(1)=(ZZ+1 .0)*Z/4.0
H(2)=((5.0*ZZ+16.0)*ZZ+3.0)*Z/96.0
HC3)=(((3.0*ZZ+19.0)*ZZ+17.0)*ZZ-15.0)*Z/384.0
H(4)=((C(79.0*ZZ+776.0)*ZZ+1482.0)*ZZ-1920.0)*ZZ-945.0)*Z/92160.0

2 CONTINUE
ZZ=0 .0
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DO 1 I=1,4
J=S-I

ZZ=(ZZ+H(J))/DF

1 CONTINUE
STUDT=ZZ+Z

IF(P.LT.0.5) STUDT=-STUDT
STUDTP=STUDT
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCC

C SLAMCOM
C
C THIS IS A FILE OF COMMON VARIABLES INCLUDED IN EACH PROGRAM THROUGH

C AN INCLUDE COMMAND. THE VARIABLES ARE:

C
C MX - THE CALCULATED MEAN VALUE OF THE X OBSERVATIONS
C MMX - THE MMAE ESTIMATED MEAN VALUE OF THE X OBSERVATIONS
C IRUNS - THE NUMBER OF RUNS FOR THE MONTE CARLO ANALYSIS

C TRUVAL - THE THEORETICAL MEAN VALUE OF THE OBSERVATIONS
C NENT - THE NUMBER OF ENTITIES GENERATED BY THE SLAM CODE

C (INCLUDING THOSE TRUNCATED)
C X - A VECTOR OF THE OBSERVATIONS
C CONF - DETERMINES DESIRED CONFIDENCE LEVEL (1 - ALPHA/2) = CONF SO
C FOR A 90% C.I. COiF = 0.95
C NBATCH - NUMBER OF BATCHES FOR THOSE METHODS REQUIRING BATCHING
C NDAT - THE AMOUNT OF DATA IN THIS PARTICULAR RUN
C BATSIZ - THE SIZE OF THE BATCHES
C NBATCH - THE NUMBER OF OBSERVATIONS PER BATCH
C DSIZE(3) - THREE POSSIBEL VALUES FOR DATA SIZE

C BAMT(3) - THREE POSSIBLE NUMBER OF BATCHES
C SPVAL - A NUMBER THAT DETERMINES HOW MANY STANDARD DEVIATIONS (AS
C ESTIMATED BY FISHMANS APPROX) AWAY FROM THE MIDDLE FILTER
C YOU PLACE THE OUTSIDE FILTERS IN MMAE
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C FOR THE FOLLOWING ARRAYS I,J, AND K REPRESENT INDICES TO SHOW
C THE FOLLOWING:
C I = METHOD NUMBER USED (1 TO 6)
C WHERE 1 = NON-OVERLAPPING BATCH MEANS
C 2 = OVERLAPPING BATCH MEANS

C 3 = STANDARDIZEb TIME SERIES

C 4 = FISHMAN'S AUTOREGRESSIVE METHOD
C 5 = K.F. USING FISHMANS APPROX FOR VARIANCE
C 6 = MMAE K.F.

C J = AMOUNT OF DATA USED (1 TO 3)
C WHERE 1 = 1280 OBSERVATIONS

C 2 = 2560 OBSERVATIONS
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C 3 = 5120 OBSERVATIONS
C K = BATCH SIZE (1 TO 3)
C WHERE 1 = J/5
C 2 = J/10
C 3 = J/20

C
CccCcccccCCCCCCCCcCCCCCCCCCCcccccccCCCCCCCCCcCCCCccCCccCCCccccCcCCCccCCCCCC

C

C COVER(I,J,K) - CONTAINS THE NUMBER OF TIMES EACH CONFIDENCE
C INTERVAL CONTAINS THE ACTUAL VALUE
C SUMW(I,J,K) - CONTAINS THE RUNNING SUM OF EACH INTERVALS

C HALF WIDTH

C SUMW2(I,J,K) - CONTAINS THE RUNNING SUM OF EACH INTERVALS
C HALF WIDTHS SQUARED

C WIDTH(I,J,K) - AVERAGE HALF-WIDTH
C STAND(IJ,K) - STANDARD DEVIATION OF HALF-WIDTHS
C TCRIT(I,J,K) - APPROPRIATE VALUE OF T CRITICAL FOR EACH METHOD
C MA(J),VA(J),SA(J),SA2(J) - MEAN OF A, VARIANCE OF A, RUNNING SUM

C OF A VALUES, RUNNING SUM OF SQUARED A VALUES.
C WHERE A = K.F. ESTIMATE OF RESIDUALS SEQUENCE'S
C VARIANCE

C MQD(J),VQD(J),SQD(J),SQD2(J) - SAME AS ABOVE WHERE QD IS THE K.F.

C ESTIMATE OF THE VARIANCE OF THE
C NOISE IN THE PROCESS
C MR(J),VR(J),SR(J),SR2(J) - SAME AS AB9VE WHERE R IS THE K.F.

C ESTIMATE OF THE VARIANCE OF THE MEASUREMENT NOISE
C MXK(J),VK1(J),SK1(J),SK12(J) - SAME AS ABOVE WHERE KI IS THE FIRST

C ELEMENT OF THE K.F. GAIN VECTOR K
C MX2(J),VK2(J),SK2(J),SK22(J) - SAME AS ABOVE WHERE K2 IS THE
C SECOND ELEMENT OF THE K.F. GAIN VECTOR K
C MPHI1(J),VPHI1(J),SPHI1(JO,SPHI12(J) - SAME AS ABOVE WHERE PHIl IS
C THE K.F. ESTIMATE OF PHIl
C MPHI2(J),VPHI2(J),SPHI2(J),SPHI22(J) - SAME AS ABOVE WHERE PHI2 IS
C THE K.F. ESTIMATE OF PHI2

C MMXD(J),VMXD(J),SMXD(J),SMXD2(J) - SAME AS ABOVE WHERE MXD IS THE
C DEVIATIONS OF MX (THE AVERAGE
C VALUE OF THE X OBSERVATIONS)
C FROM THE TRUE VALUE OF THE MEAN

C MMMXD(J),VMMXD(J),SMMXD(J),SMMXD2(J) - SAME AS ABOVE WHERE MMXD IS THE
C DEVIATIONS OF MMX (MMAE'S
C ESTIMATE OF THE MEAN OF X)

C FROM THE TRUE VALUE OF THE MEAN
C

C
C SET PARAMETERS THAT DO NOT CHANGE EVER!!!!
C

DOUBLE PRECISION NRUNS
DOUBLE PRECISION CONF
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INTEGER IFILT

DOUBLE PRECISION SPVAL
PAR.AMETER (SPVAL = 5.)
PARAMETER (NFILT = 21)
PARAMETER (CONF = 0.95)
PARAMETER (NRUNS =1000.)

DOUBLE PRECISION DSIZE(3)
DATA DSIZE / 1280,2560,5120/

DOUBLE PRECISION BAMT(3)
DATA BAMT / 5,10,20/

C
C DECLARE COMMON VARIABLES

C

DOUBLE PRECISION X(5120)
DOUBLE PRECISION MX

DOUBLE PRECISION MMX
DOUBLE PRECISION EDAT
DOUBLE PRECISION NBATCH
DOUBLE PRECISION BATSIZ
DOUBLE PRECISION TCRIT(6,3)

DOUBLE PRECISION TRUVAL
INTEGER NENT

DOUBLE PRECISION COVER(6,3,3),SUMW(6,3,3),SUM4W2(6,3,3)
*,WIDTH(6,3,3) ,STAND(6,3,3)
*,SA(3) ,SA2(3) ,SQD(3) ,SQD2(3) ,SR(3) ,SR2(3) ,SK1(3)
*,SPHI1(3) ,SPH112(3) ,SPHI2(3) ,SPHI22(3)

*,SK12(3) ,SK2(3) ,SK22(3)
* ,MA(3) ,VA(3) ,MR(3) ,VR(3) ,MQD(3) ,VQD(3) ,MK1(3) ,VK1(3)
*,MJC2(3) ,VK2(3) ,MPHI1(3) ,VPHI1(3) ,MPHI2(3) .VPHI2(3)
* .MMXfl(3) ,MMMXD(3) ,VMXfl(3) ,VMMXD(3) ,SMXfl(3) ,SMMXD(3)
*,SMXD2(3) ,SMMXD2(3)

COMMON/SLAMCOM/X,MX, MMX ,TCRIT ,TRUVAL ,NENT ,COVER,S51MW, SUMW2,
*SA,SA2,SQD,SQD2,SR,SR2,SK1,SK12,SK2,SK22,SPHI1,SPHI12,SPHI2,
*SPH122,MA,VA,MQD,VQD,MR.VR,MK1 ,VK1 ,MK2,VK2,
*MPHI 1.VPHI 1, MPH12,VPH2, WIDT,STAND, RAT, BATIZ,NBATCH, MMXl, MMXD,
*VMXD ,VMMXD ,SMXD ,SMMXD ,SMXl2 , SMMXD2

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C COMVAR

C
C
C COMMON BLOCK OF GLOBAL VARIABLES
C THESE VARIABLES ARE USED IN THE SUBROUTINES DEALING WITH THE KALMAN
C FILTER TECHNIQUES FOR CONFIDENCE INTERVAL CONSTRUCTION
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C
C VARIABLES & DEFINITIONS

C
C
C Ki - THE VALUE OF Ki IN THE KF
C K2 - THE VALUE OF K2 IN THE KF
C PHIl - THE ESTIMATED VALUE OF PHIl
C PH12 - THE ESTIMATED VALUE OF PH12
C RHOl - THE CALCULATED VALUE OF RHOl
C RHO2 - THE CALCULATED VALUE OF RHO2
C

DOUBLE PRECISION Kl,K2,PHI1,PHI2,RHOl,RH02,RHO3
COMMON /COMVAR/ Kl,K2.PHIl,PHI2,RHOl,RH02.RHO3
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Appendix B. Computer Routines for AR(2) Data Generation

PROGRAM ARGEN

INCLUDE '[RHOWARD.LATVER]COMVAR.FOR'

INCLUDE 'ERHOWARD.LATVER]SLAMCOM.FOR'

C
C THIS PROGRAM GENERATES OBSERVATIONS FROM AN AR(2) PROCESS

C (I.E. X(I) = KSI + AR1*X(I-1) + AR2*X(I-2) + EPSILON)

C THE PROGRAM ALSO ALLOWS FOR THE INTRODUCTION OF MEASUREMENT NOISE

C INTO THE PROCESS

C
C LOCAL VARIABLES & DEFINITIONS

C
C IP - COUNTER INDICES FOR DO LOOPS
C ARI - THE VALUE OF THE FIRST AUTOREGRESSIVE COEFFICIENT
C AR2 - THE VALUE OF THE SECOND AUTOREGRESSIVE COEFFICIENT
C VAREPS - THE VARIENCE OF EPSILON

C KSI - THE VALUE OF KSI (A CONSTANT)
C VARMN - THE VARIANCE OF MEASUREMENT NOISE

C MEAN - THE THEORETICAL MEAN VALUE OF THE PROCESS
C TEMPi - A DUMMY VARIABLE FOR X(I-1)

C TEMP2 - A DUMMY VARIABLE FOR X(I-2)
C SHOCK 1 - NORMAL (0,1) PSEUDORANDOM VARIATE
C SHOCK 2 - NORMAL (0,I) PSEUDORANDOM VARIATE
C WIDTH(NMETH) - AVERAGE HALF-WIDTH FOR EACH METHOD
C STAND(NMETH) - STANDARD DEVIATION OF THE HALF-WIDTHS FOR EACH METHOD
C SMX,SMX2,NX,MX,VX,SX - USED TO KEEP STATS ON X VARIABLES

C SMU,SMU2,NU,MU,VU,SU - USED TO KEEP STATS ON UNIFORM VARIATES

C SMN,SMN2,NN,MN,VN,SN - USED TO KEEP STATS ON NORMAL VARIATES

C

INTEGER I,P

DOUBLE PRECISION B

DOUBLE PRECISION ARi, AR2, KSI, VAREPS, MEAN, TEMPi, TEMP2

DOUBLE PRECISION SHOCKI, SHOCK2, VARMN

PARAMETER (VAREPS= 1.)

PARAMETER (VARMN = 1.)
DOUBLE PRECISION SMX,SMX2,SMU,SMU2,SMN,SM12,NX,NU,NN

DATA SMXSMX2,SMUSMU2,SMN,SMN2,NX,NU,NN/ 9*0.0 /
DOUBLE PRECISION VX,MU,VU,SU,MN,VN,SN
DOUBLE PRECISION STUDTP
EXTERNAL STUDTP

OPEN (UNIT= 1, FILE=' [RHOWARD. LATVER AR22. new , STATUS= ' NEW' )
OPEN (UNIT= 12, FILE=' [RHOWARD. LATVER]CA2. TDF' ,STATUS='NEW')
OPEN(UNIT=13,FILE=' [RHOWARD.LATVER]HA2.TDF' ,STATUS='NEW')
OPEN (UNIT= 14, FILE=' [RHOWARD. LATVER] SA2. TDF' , STATUS= 'NEW' )
OPEN (UNIT= 15, FILE=' ERHOWARD. LATVER] KA2. TDF' ,STATUS=' NEW' )
OPEN(UNIT=8,FILE=' RBOWARD.LATVER] MA2.TDF' ,STATUS='NEW')
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OPEN(UNIT=17,FILE= ' [RHOWARD.LATVER]VA2.TDF',STATUS='NEW')

C
C BY OPENING THESE FILES AND WRITING THE APPROPRIATE VALUES TO THEM
C THROUGHOUT THE PROGRAM ONE CAN RECORD THE X OBSERVATIONS THE
C NORMAL(0,1) PSEUDORANDOM VARIATES AND THE UNIFORM(0,1) PSEUDORANDOM
C VARIATES. THIS IS USEFUL FOR DEBUGGING PURPOSES AND TO INSURE THE
C PSEUDEORANDOM NUMBER GENERATOR WORKS SUFFICIENTLY WELL
C

C OPEN (UNIT=12,FILE='IuNI.DAT',STATUS='UNKNOWN')
C OPEN (UNIT=13,FILE='NORM.DAT ,STATUS='UNKNOWN')
C OPEN (UNIT=14,FILE='AR2.DAT',STATUS=IUNNOWN')

C
C SET CONSTANT VALUES AND DETERMINE THEORETICAL MEAN
C

ARi = 0.5
AR2 = 0.3

KSI = 10.
MEAN = KSI/(l. - ARi - AR2)

TRUVAL = MEAN

C
C USE THE MEAN FOR THE FIRST TWO DUMMY VARIABLES

C

TEMPi = MEAN
TEMP2 = MEAN

C
C INITIALIZE MONTE CARLO ANALYSIS VARIABLES
C

CALL INITIAL

C
C INITIALIZE VALUES FOR EACH RUN

C

DO 777 P = I,NRUNS

NX =0.0

SMX = 0.0
SMX2 = 0.0

C
C PRODUCE OBSERVATIONS FOR A SINGLE RUN
C
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DO 100 1 = 1,5119,2
CALL NORM(SHOCK1,SHOCK2,SMU,SMU2,NU,SMN,SMN2,NN)

X(:) = KSI + AR1*TEMP1 + AR2*TEMP2 + ShOCK1*VAREPS

X(I+l) = KSI + ARI*X(I) + AR2*TEMP1 + SHOCK2*VAREPS

C
C ADD MEASUREMENT NOISE
C

CALL NORM(SHOCKI,SHOCK2,SMU,SMU2,NU,SMN,SMN2,NN)
X(I) = X(I) + SHOCKI*VARMN
X(I+l) = X(I+1) + SHOCK2*VARMN

C WRITE (14,*) X(I)
C WRITE (14,*) X(I+I)

C
C KEEP TRACK OF RUNNING SUMS TO CALCULATE AVERAGE VALUE AND STANDARD
C DEVIATION OF OBSERVATIONS
C

SMX = SMX + X(I)+ X(I+I)

SMX2 = SMX2 + X(I)*X(I) + X(I+1)*X(I+I)

NX = NX + 2

C
C ASSIGN VALUES TO TEMPORARY VARIABLES
C ('NOTE! SUBTRACT OFF MEASUREMENT NOISE)

C

TEMPI = X(I+1) - SHOCK2*VARMN
TEMP2 = X(I) - SHOCK1*VARMN

100 CONTINUE

C
C CALCULATE STANDARD DEVIATION AND MEAN VALUE OF X OBSERVATIONS,
C UNIFORM PSEUDEORADOM VARIATES AND NORMAL PSEUDO RANDOM VARIATES

C

CALL STDEV(SMX,SMX2,NX,MX,VX,SX)
CALL STDEV(SMU,SMU2,NU,MU,JVU,SU)

CALL STDEV(SMN,SMN2,NI,MN,VN,SN)

C PRINT *,I I

C PRINT *,'X - ', 'NUN = 1, NX, 'MEAN = ',MX,'VAR = ',VX
C PRINT *,'U - I, 'NU = ', NU, 'MEAN = 1,KU,'VAR = ',VU
C PRINT *,'N - ', 'IN = ', NI, 'MEAN = ',MN,'VAR = ',VN

C PRINT *,'
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C
C CALL ROUTINES FOR CONFIDENCE INTERVAL CONSTRUCTION

C

CALL CONTROL

777 CONTINUE

C
C PRODUCE OUTPUT REPORT

C

CALL FIGURE
CALL OUTPUT(AR1,AR2,VAREPS,VARMN)

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE NORM(N1,N2,SMU,SMU2,NU,SMN,SMN2,NN)

C
C SUBROUTINE NORM(N1,N2)

C
C THIS SUBROUTINE GENERATES TWO NORMAL R.V.'S USING THE BOX-MULLER
C TECHNIQUE. IT CALLS THE INTERNAL FORTRAN FUNCTION RAN WITH A
C SEED VALUE OF ISEED ON THE FIRST CALL AFTER THAT THE FUNCTION MAINTAINS
C A NEW VALUE FOR SEED. RAN RETURNS A UNIFORM ZERO,ONE VARIATE.
C
C LOCAL VARIABLES & DEFINITIONS

C
C U1,U2 - TWO PSEUDORANDOM UNIFORM(O,1) VARIATES
C N1,N2 - TWO PSEUDORANDOM NORMAL(O) VARIATES
C V1,V2,W,Y - FOUR DUMMY VARIABLES USED TO OBTAIN THE NORMAL VARIATES
C IX - INITIAL SEED VALUE

C NU,SMU,SMU2 - NUMBER OF UNIFORM VARIATES, SUM OF THE UNIFORM
C VARIATES, AND SUM OF THE SQUARED UNIFORM VARIATES

C NNSMN,SMN2 - NUMBER OF UNIFORM VARIATES, SUM OF THE NORMAL
C VARIATES, AND SUM OF THE SQUARED NORMAL VARIATES

C

DOUBLE PRECISION U1,U2
DOUBLE PRECISION NI,N2
DOUBLE PRECISION V1,V2,W,Y

INTEGER IX
DATA IX / 2637775 /
DOUBLE PRECISION SMU,SMU2,NU,SMN,SMN2,NN

INTRINSIC RAN

10 Ul = RAN(IX)
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U2 = RAN(IX)

C WRITE (12,*) U1
C WRITE (12,*) U2

SMU = SMU + Ul + U2

SMU2 = SMU2 + Ul*Ui + U2*U2

NU = NU + 2

Vi = 2*Ui-i
V2 = 2*U2-i

W = Vi*Vi + V2*V2

IF (W.GT.i) GOTO 10
Y = DSQRT((-2*DLOG(W))/W)

Ni = V1*Y
N2 = V2*Y

C WRITE (13,*) Ni
C WRITE (13,*) R2

SMN = SMN + NI + N2

SMN2 = SMN2 + Ni*Ni + N2*N2

NN = NN + 2

RETURN

END

CCCCCCCcCCcCCCCCCCCCCCCCCCCccCCcCCCCCCCCcCCCCCCCCCccCCCCCCCcCCCCCCccCCC

SUBROUTINE STDEV(SUMX,SUMX2,N,MEAN,VAR,SDEV)

C
C THIS SUBROUTINE CALCULATES THE AVERAGE VALUE, VARIANCE, AND
C STANDARD DEVIATION OF A SET OF NUMBERS GIVEN THE SUM OF THE
C OBSERVATIONS, THE SUM OF THE SQUARED OBSERVATIONS, AND THE
C NUMBER OF OBSERVATIONS
C
C LOCAL VARIABLES & DEFINITIONS
C
C SUMX - SUM OF THE OBSERVATIONS
C 5JUMX2 - SUM OF THE SQUARED OBSERVATIONS
C N - NUMBER OF OBSERVATIONS
C MEAN - AVERAGE VALUE OF THE OBSERVATIO'n
C VAR - VARIANCE OF THE OBSERVATIONS
C SDEV - STANDARD DEVIATION OF THE OBSERVATIONS

C

D-UBLE PRECISIUi SUMX,SJMX2,N,MEAN,VAR,SDEV

MEAN = SUMX/N
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VAR =SUMX2/N - MEAN*MEAN
SDEV =DSQRT(VAR)

RETURN
END
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Appendix C. Computer Routines for MIM11 Data Generation

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C
C THIS IS THE MAIN PROGRAM USING SLAM II TO MODEL AN M/M/1 QUEUE AND
C RECORD OBSERVATIONS ON EACH ENTITIES WAITING TIME IN QUEUE.
C

PROGRAM MAIN
DIMENSION NSET(10000)
INCLUDE 'SLAM$DIR: PARAM. INC'

COMMON/SCOM/ATRIB(MATRB), DD(MEQT), DDL(MEQT), DTNOW, II, MFA,
lMSTOP,NCLNR, NCRDR, NPRJT, NNRUN, NNSET, NTAPE, SS(MEQT),
2SSL(MEqT) ,TNEXT, TNOW, XX(MMXXV)

INCLUDE 'ERHOWARD.LATVERJSLAMCOM.FOR'

COMMON QSET( 10000)
EQUIVALENCE (NSET(l) ,QSET(l))
EQUIVALENCE (XX(1) ,BUSY)

C
C OPEN FILES FOR DATA OUTPUT REPORTS
C

OPEN(UNIT=12,FILE='CM8W.TDF',STATUS='NEW')
OPEN(UNIT=13,FILE=HM8W.TDF' ,STATUS='NEW')
OPEN(UNIT=14,FILE='SM8W.TDF' ,STATUS='NEW')
OPEN(UNIT=15,FILE=KM8W.TDF' ,STATUS='NEW')
OPEN(UNIT=8,FILE=MM8W.TDF' ,STATUS='NEW')
OPEN(UNIT=17,FILE=VM8W.TDF' ,STATUS='NEW')

C
C SET SLAM II PARAMETERS
C

NNSET= 10000
NCRD R=S
NPRNT=6
NTAPE=7
NPLOT=2

C
C BEFORE FIRST RUN, INITIALIZE PARAMETERS
C

CALL INITIAL
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C
C CALL SLAM II PROGRAM
C

CALL SLAM
C
C AFTER SLAM HAS COMPLETED ALL RUNS CALL ROUTINE TO CALCULATE STATISTICS
C

CALL FIGURE

C
C AFTER STATISTICS ARE CALCULATED CALL OUTPUT TO PRODUCE OUTPUT FILES

C

CALL OUTPUT

STOP
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE EVENT(I)

C
C SUBROUTINE THAT ENTERS CUSTOMERS INTO SERVICE AND RECORDS WAITING TIME WHEN
C SERVICE IS COMPLETE

C

INCLUDE 'SLAM$DIR:PARAM.INC'
COMMON/SCOMI/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRU],NNSET,NTAPE,SS(100),SSL(100),TYEXT,TNOW,XX(100)

INCLUDE '[RHOWARD.LATVER]SLAMCOM.FOR'

C*****BEGIN SUBROUTINE
C*****

DIMENSION A(10)

GO TO (1,2),1

C*****SEE IF SERVER IS AVAILABLE AT CUSTOMER ARRIVAL

1 IF (NIACT(1).EQ.O) GOTO 10
CALL FILEM(1,ATRIB)

125



RETURN

10 ATRIB(2)0O
CALL ENTER(1 SATRIB)
RETURN

C*****AFTER COMPLETION OF SERVICE, SEE IF ANOTHER CUSTOMER IS WAITING
C*****AND RECORD WAITING TIME IN QUEUE.

2 NENT = NENT + 1
IF (NNQC1).EQ.0) GOTO 20
CALL RMOVE(1,1,A)
A(2)=TNOW - A(l)
CALL ENTER(1,A)

20 IF (NENT.LT.6000) GOTO 30
X(NENT-5000) = ATRIB(2)

30 RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE INTLC

C
C SLAM CALLS THIS SUBROUTINE BEFORE EVERY RUN TO REINITIALIZE PARAMETERS
C

INCLUDE 'SLAM$DIR: PARAM. INC'

COMMON/ SCOM 1/ATRIB (MATRB) , DD(MEQT), DDL(MEQT), DTNOW, II, MFA,
1MSTOP,NCLNR, NCRDR, NPRNT, NNRUN, NNSET, NTAPE, SS(MEQT),
2S5L(MEQT),TNEXT, TNOW, XX(MMXXV)

INCLUDE '[RHOWARD.LATVERJSLAMCOM.FOR'

NENT=0

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE OTPUT

C
C SLAM CALLS THIS SUBROUTINE AT THE END OF EVERY RUN, THIS ROUTINE CALLS
C THE ROUTINES THAT CALCULATE CONFIDENCE INTERVALS.
C

INCLUDE 'SLAM$DIR: PARAM. INC'
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COMMON/SCOMl/ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)

INCLUDE 'CEHOWARD.LATVER]SLAMCOM.FOR'

CALL CONTROL

RETURN

END

cccccCCCccccccccccccccCCCCCcccccccccccCccCCCcccccccccCCCcCCcccCCCc

C
C THIS IS THE SLAM II CODE FOPR WAITING TIME IN QUEUE WITH A TRAFFIC
C INTENSITY OF 0.8
C

GEN,HOWARD,THESIS, 1/15/92, 1000,YES,NO,YES/NO,NO,NO,72;

LIMITS,1,5,100;

INITIALIZE;

NETWORK;

CREATE,EXPON(l.0) ,0,1,10120;
CRE EVENT,1,1;

TERMINATE;
ARR ENTER,1,1;

ACTIVITY(1)/l,EXPON(.8);
DON EVERiT,2,1;

TERMINATE, 10120;

ENDNETWORK;
FIN;
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Appendix D. Computer Routines for Monte Carlo Analysi's

SUBROUTINE OUTPUT

C
C THIS SUBROUTINE WRITES THE RESULTS TO OUTPUT FILES IN A FORMAT
C THAT LATEX CAN READ IN TO PRODUCE FINAL TABLES
C

COMMON/SCOM1/ATRIB(100) ,DD(100) ,DDL(100) ,DTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)

INCLUDE '[RHOWARn.LATVERJSLAMCOM.FOR'

INTEGER J1

DO 10 J =1,3
WRITE(12,101) INT(DSIZE(J)),

* COVER(1,J,1) ,COVER(1,J,2),COVER(1,J,3) ,COVER(2,J,1),
* COVERC2,J,2) ,COVER(2,J,3) ,COVER(3,J,1) ,COVER(3,J,2),
* COVER(3,J,3) ,COVER(4,J,1),COVER(5,J,1) ,COVER(6,J,1)

10 CONTINUE

DO 20 J = 1,3

WRITE(13,101) INT(DSIZE(J)),
* WIDTH(1,J,1) ,WIDTH(1,J,2),WIDTH(1,J,3) ,WIDTH(2,J,1),
* WIDTH(2,J,2),WIDTH(2,J,3),WIDTH(3,J,1),WIDTH(3,J,2),

* WIDTH(3,J,3) ,WIDTH(4,J,1) ,WIDTH(5,J,1) ,WIDTH(6,J,l)

20 CONTINUE

DO 30 J =1,3
WRITE(14, 101) INT(DSIZE(J)),

* STANFD(1,J,1) ,STAND(1,J,2),STAND(1,J,3) ,STAND(2,J,1),
* STAND(2,J.2) ,STAND(2,J,3) ,STA~fl(3,J,1) ,STAND(3,J,2),
*STAI(3, J.3), STAND (4, J, 1),STAND(5, J, 1), STAND (6,J, 1)

30 CONTINUE

DO 40 J3 1,3
WRITE(15,102) IIT(DSIZE(J)),MA(J),MQD(J),MR(J),

* MX1(J),KK2(J),MPHI1(J),MPHI2(j)

40 CONTINUE

DO 50 J = 1,3
WRITE(15,102) INT(DSIZE(J)),

VA(J),VQD(3),VR(J),VKIC3),VK2(J),VPHIi(J),VPHI2(J)

s0 CONTINUE

DO 60 J =1,3
WRITE(8,103) INT(DSIZE(J)),MMXD(J),MMMXD(J)
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60 CONTINUE

DO 70 .3 = 1,3
WRITE(17,103) INT(DSIZE(J)) ,VMXD(J) ,VMMXD(J)

70 CONTINUE

101 FORMAT (16, 12('&), F6.3),'
102 FORMAT (16, 7('&', F8.4)2 W)
103 FORMAT (16, 2('&', F8.4), W)

RETURN

END

CcccCcCCCCCcccccccccccccccCCccccccc~C~CC~C~~CCCCcCcCCcccccCcccCCCCc

SUBROUTINE INITIAL

C
C THIS SUBROUTINE INITIALIZES VARIABLES USET TO KEEP TRACK OF THE STATISTICS
C

COMMON/SCOMl/ATRIB(100) ,DO(100) ,DDL(100) ,OTNOW,II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100) ,SSL(100),TNEXT,TNOW,XX(100)

INCLUDE 'ERHOWARD.LATVER]SLAMCOM.FOR'

DOUBLE PRECISION SERRATE,ARRRATE

WRITE(1,*) 'IN PROGRAM INITIAL'

DO 10 J= 1,3

D0 20 I = 126
DO 30 K = 1,3

COVER(I,J,K) = 0.

SUMW(I,J,K) =0.

SUMW2(I,J,K) = 0.
30 CONTINUE
20 CONTIN UE

SA(J) =0.0

SA2(J) 0.0
SQD(J) 0.0
SQD2(J) =0.0

SR(J) =0.0

SR2CJ) =0.0

SK1(J) =0.0

SK12(J) = 0.0
SK2(J) =0.0

SK22(J) = 0.0

SPHi1(J) =0.0

SPHI12(J) =0.0
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SPHI2(J) = 0.0

SPH122(J) = 0.0

SMXD(J) = 0.0

SMXD2(J) = 0.0

SMMXD(J) = 0.0
SMMXD2(J) = 0.0

10 CONTINUE

C

C SET TCRIT VALUES FOR METHODS THAT DON'T CHANGE NOTE!! THESE CRITICAL

C VALUES NEED TO BE CHANGED ACCORDING TO ALPHA, NUMBER OF BA.CHES, DATA

C SIZE, ETC.
C

TCRIT(ll) = 2.132

TCRIT(1,2) = 1.833
TCRIT(1,3) = 1.729
TCRIT(2,1) = 1.943

TCRIT(2,2) = 1.766
TCRIT(2,3) = 1.7

TCRIT(3,1) = 2.015

TCRIT(3,2) = 1.812

TCRIT(3,3) = 1.725

TCRIT(5,1) = 1.645

TCRIT(6,1) = 1.725

C
C THE ARRRIVAL RATES AND SERVICE RATES LISTED BELOW ARE RATES PER UNIT

C TIME. SO IN THE SLAM CODE YOU SHOULD PUT 1/ARRRATE AND 1/SERRATE IN.
C

ARRRATE = 1.
SERRATE = 5./4.

TRUVAL = ARRRATE/(SERRATE*(SERRATE-ARRRATE))

TI = ARRRATE/SERRATE
RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE FIGURE

C AFTER THE FINAL RUN OF THE MONTE CARLO ANALYSIS THIS SUBROUTINE CALCULATES

C THE APPROPRIATE STATISTICS

C

INCLUDE 'ERHOWARD.LATVER]SLAMCOM.FOR'

INTEGER I,J,K
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DOUBLE PRECISION TEMP

DO 10 J =1,3

DO 20 I = 1,6
DO 30 K = 1,3

COVER(I,J,K) =COVER(I,J,K)/NRUNiS
WIDTH(I,J,K) = SUMW(I,J,K)/NRUNS
TEMP = SUMW2(I,J,K)/NRUNS - WIDTH(I,J,K)**2
IF (TEMP.LE.O) THEN

STAND(I,J,K) =0.0
ELSE

STAND(I.J,K) = DSQRT(TEMP)
C WRITE (1,*) STAND(I,J,K)

ENDIF
30 CONTINUE
20 CONTINUE

MA(J) =SA(J)/NRUNS
MQD(J) =SQD(J)/NRUNS
MR(J) = SR(J)/NRUIS
MKI((J) = KI(J)/NRUNS
MK12(J) = SK2(J)/NRUNS

MPHI1(j) =SPHIl(J)/NRUNS
MPH12(J) = SPH12(J)/NRUNS
VA(J) = DSQRT(SA2(J)/NRUNS - MA(J)**2)
VQD(J) =DSQRT(SQD2(J)/NRUNS - MQD(J)**2)
VR(J) = DSQRT(SR2(J)/NRUNS - MR(J)**2)
VK1(J) =DSQRT(SK12(J)/NRUNS -MK1(J)**2)

VK2(J) =DSQRT(SK22(J)/NRUNS -MK2(J)**2)

VPHI1(J) = DSQRTCSPHI12(J)/NRUNS - MPHI1(J)**2)
VPH12(J) =DSQRT(SPH122(J)/NRUNS - MPH12(J)**2)
MMXD(J) = SMXD(J)/NRUIS
MMMXD(J) =SMMXD(J)/NRUNS

VMXfl(J) =DSQRT(SMID2(J)/NRUNS - MMXD(J)**2)
VMMXD(J) = DSQRT(SMMXD2(J)/NRUNS - MMMXD(J)**2)

10 CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE CONTROL

C
C THIS SUBROUTINE CHANGES THE SAMPLE SIZE FOR THE MONTE CARLO ANALYSIS
C

INCLUDE '[RHOWARD.LATVERJSLAMCOM.FOR'

INTEGER I
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DO 10 I = 1,3
NDAT = DSIZE(I)
CALL GETMX(I)

CALL KFMAIN(I)
CALL MAINNB(I)

CALL MAINB(I)

10 CONTINUE

RETURN

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE GETMX(DS)

C
C THIS SUBROUTINE CALCULATES THE AVERAGE VALUE OF THE OBSERVATIONS FOR
C A GIVEN SAMPLE SIZE
C

INCLUDE '[RHOWARD.LATVER]SLAMCOM.FOR'

INTEGER DS,I
DOUBLE PRECISION SUMX

SUMX = 0.0
DO 10 I = 1,NDAT

SUMX = SUMX + X(I)
10 CONTINUE

MX = SUMX/NDAT

RETURN

END

132



Vita

Captain Randall B. Howard was born on 25 November 1965 in Summitt, New Jersey. He grad-

uated from Dunwoody High School, Dunwoody Georgia, in 1982. He then attended Birmingham

Southern College, graduating in 1986 with a Bachelor of Science in Mathematics and Chemistry.

Upon graduation, he received his commission in the United States Air Force through ROTC. He

served as a Fuels Chemist and as Group Leader, Missile Fuels Research and Development for the

Wright Research and Development Center at Wright Patterson AFB, OH from October 1986 to

August 1990. In August 1990, he entered the Air Force Institute of Technology's School of Engi-

neering, in the Operational Sciences Department.

Permanent address: 5532 Brinson Way
Norcross, GA 30092

133



Bibliography

1. Abraham, Bovas and Johannes Ledolter. Statistical Methods for Forecasting. New York: John Wiley
& Sons, 1983.

2. Akaike, Hirotugu. "Markovian Representation of Stochastic Processes and Its Application to the Anal-
ysis of Autoregressive Moving Average Processes," Annals of the Institute of Statistical Mathematics,
26(3):363-387 (1974).

3. Bauer, Kenneth W. and others. Confidence Interval Estimation for Output of Discrete-Event Simulation
Using the Kalman filter. Research Proposal (Submitted to Air Force Office of Scientific Research),
Wright-Paterson AFB, OH: School of Engineering, Air Force Institute of Technology (AU), September
1991.

4. Box, George E. P. and Gwilym M. Jenkins. TimL Series Analysis, Forecasting, and Control. Oakland,
CA: Holden-Day Publishers, 1976.

5. Chen, Bor-Chung and Robert G. Sargent. "Confidence Interval Estimation for the Parameter of Sta-
tionary Processes," Management Science, 36(2):200-211 (February 1990).

6. Choobineh, F. and J. L. Ballard. "A Method of Confidence Interval Construction for Simulation Output
Analysis," Operations Research Letter, 8(5):265-270 (October 1989).

7. Committee on Armed Forces. United States Congress. Department of Defense Critical Technology Plan.
Technical Report. 1990.

8. Fishman, George S. "The Allocation of Computer Time in Comparing Simulation Experiments," Op-
erations Research, 18(1):280-295 (September 1971).

9. Fishman, George S. "Grouping observations in digital simulation," Management Science, 24 (5):510-521
(January 1918).

10. Fishman, George S. Principles of Discrete Event Simulation. New York: John Wiley & Sons, 1978.

11. Gallagher, Mark A. Multivariate Output Analysis of Discrete-Event Simulations using the Kalman
Filter. PhD Dissertation {Not Yet Published}, Wright-Patterson AFB, OH: School of Engineering, Air
Force Institute of Technology (AU), January 1992.

12. Glynn, Peter W. and Donald L. Iglehart. "Simulation Output Analysis Using Standardized Time
Series," Mathematics of Operations Research, 15(1):1-16 (February 1990).

13. Goldsman, David and Lee Schruben. "New Confidence Interval Estimators Using Standardized Time
Series," Management Science, 36(3):393-397 (March 1990).

14. Grier, Peter. "Improving Systems with Simulators," Air Force Magazine, 73(8):40-43 (August 1990).

15. Harvey, Andrew C. Forecasting, Structural Time Series Models and the Kalman Filter. New York:
Cambridge University Press, 1989.

16. Heidelberger, Philip and Peter D. Welch. "A Spectral Method for Confidence In'erval Generation and
Run Length Control in Simulations," Communications of the ACM, 24(4):233-245 (April 1981).

17. Hillier, Frederick S. and Gerald J. Lieberman. Introduction to Operations Research. New York:
McGraw-Hill Publishing Company, 1990.

18. Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems," Journal of Basic
Engineering, 82:34-45 (1960).

134



19. Kalman, R. E. and R. S. Bucy. "New Results in Linear Filtering and Prediction Theory," Journal of

Basic Engineering, 83:95-108 (1961).

20. Kang, Keebom and David Goldsman. "The Correlation Between Mean and Variance Estimators in
Computer Simulation," IE Transactions, 22(1):15-23 (March 1990).

21. Kang, Keebom and Bruce Schmeiser. "Graphical Methods for Evaluating and Comparing Confidence-
Interval Procedures," Operations Research, 38(3):546-552 (March-June 1990).

22. Kelton, W. David and Averill M. Law. "A New Approach for Dealing with the Startup Problem in
Discrete Event Simulation," Naval Research Logistics Quarterly, 30:641-658 (1983).

23. Lainiotis, Demetrios G. "Optimal Adaptive Estimation: Structure and Parameter Adaptation," IEEE
Transactions on Automatic control, AC-16(2):160-170 (April 1971).

24. Lainiotis, Demetrios G. "Partitioning: A Unifying Framework for Adaptive Systems, I:Estimation,"
Proceedings of the IEEE, 64 (8):1126-1143 (August 1976).

25. Law, Averill M. "Confidence Intervals in Discrete Event Simulation: A comparison of Replication and

Batch Means," Naval Logistics Research Quarterly, 23:667-678 (1977).

26. Law, Averill M. "Statistical Analysis of Simulation Output Data," Operations Research, 31(6):983-1029
(November 1983).

27. Law, Averill M. and John S. Carson. "A Sequential Procedure for Determining the Length of a Steady-
State Simulation," Operations Research, 27(5):1011-1025 (September-October 1979).

28. Law, Averill M. and W. David Kelton. "Confidence Tntervals for Steady-State Simulation: I," Operations

Research, 32(6):1221-1239 (November 1984).

29. Law, Averill M. and W. David Kelton. Simulation Modeling and Analysis. New York: McGraw-Hil
Inc., 1991.

30. Maybeck, Peter S. Stochastic Models, Estimation, and Control Volume 1. New York: Academic Press,

Inc., 1979.

31. Maybeck, Peter S. Stochastic Models, Estimation, and Control Volume 2. New York: Academic Press,

Inc., 1982.

32. Maybeck, Peter S. Stochastic Models, Estimation, and Control Volume 3. New York: Academic Press,

Inc., 1982.

33. Maybeck, Peter S. "Adaptive Tracking of Dynamic Airborne Vehicles Based on (FLIR) Image Plane

Intensity Data." In Proceedings of the Third Bad Honnef Conference on Stochastic Differential Systems,
pages 284-305, Berlin: Springer-Verlag, 1986.

34. Maybeck, Peter S. and Karl P. Hentz. "Investigation of Moving-Bank Multiple Model Adaptive Algo-
rithms," AIAA Journal of Guidance, Control, and Dynamics, 10(1):90-96 (January-February 1987).

35. Mehra, R.K. "On-line Identification of Linear Dynamic Systems with Applications to Kalman Filtering,"
IEEE Transactions on Automatic Control, AC-16(1):753-768 (April 1971).

36. Meinhold, Richard. .J. and Nozer. D. Singpurwalla. "Understanding the Kalman Filter," Journal of the

American Statistician, 37(3):123-127 (May 1983).

37. Meketon, Marc S. and Bruce Schmeiser. "Overlapping Batch Means: Something for Nothing?." In Pro-

ceedings of the 1984 Winter Simulation Conference, pages 227-230, Atlanta, GA: Institute of Electrical
and Electronics Engineers, 1984.

38. Pritsker, Alan. B. Introduction to Simulation and SLAM II. West Lafayette, IN: Systems Publishing

Corporation, 1986.

135



39. Ross, Sheldon M. Introduction to Probability Models. New York: Academic Press, Inc., 1989.

40. Schmeiser, Bruce. "Batch Size Effects in the Analysis of Simulation Output," Operations Research,
30(3):556-568 (May-June 1982).

41. Schriber, Thomas J. and Richard W. Andrews. "ARMA-Based Confidence Intervals for Simulation Out-
put Analysis," American Journal of Mathematical and Management Sciences, 4(3-4):345-373 (1984).

42. Schruben, Lee. "Confidence Interval Estimation Using Standardized Time Series," Operations Research,
31 (6):1090-1108 (November-December 1983).

43. Schruben, Lee W. "Detecting Initialization Bias in Simulation Output," Operations Research,
30(3):569-590 (May-June 1982).

44. Sheldon, Stuart N. and Peter S. Maybeck. "An Optimizing Design Strategy for Multiple Model Adaptive
Estimation and Control," Proceedings of the 29th IEEE Conference on Decision and Control, pages
3522-3527 (December 1990).

45. Welch, Peter D. "The Statistical Analysis of Simulation Results." In L;.verberg, S. S., editor, The

Computer Performance Modeling Handbook, pages 268-328, New York: Academic Press, 1983.

46. Wilson, James R. "Statistical Aspects of Simulation." In Brans, J. P., editor, Operational Research '84:
Proceedings of the Tenth International Conference on Operational Research, pages 921-937, Amsterdam:

Elsevier Science Publishers B.V. (North Holland), 1984.

47. Wilson, James R. and A. Alan B. Pritsker. "A Survey of research on the Simulation Startup Problem,"
Simulation, 31(2):55-58 (August 1978).

136


